

 Name: ________________________________ netid : ________________________

CSE 341 Winter 2019 Final

Please do not turn the page until 2:30.

Rules:

● The exam is closed-book, closed-note, etc. except ​both sides​ of a 8.5x11in page.

● Please stop promptly at 4:20.

● There are ​152 points​, distributed ​unevenly​ among 7 multi-part questions.

● QUESTIONS VARY GREATLY IN DIFFICULTY. GET EASY POINTS FIRST!!!

● The exam is printed double-sided, with pages numbered up to 23.

Advice:

● Read the questions carefully. Understand before you answer.

● Write down thoughts and intermediate steps so we can give partial credit.

● Clearly indicate your final answer.

● WRITE CLEARLY. No partial credit for anything we can’t read.

● Questions are not in order of difficulty. ​Answer everything.

● If you have questions, ask.

● Relax. You are here to learn.

1

 Name: ________________________________ netid : ________________________

QUESTION 1 (15 points) ​ ​(Racket Programming)

(A)​ What does the following program print?

; Note: println prints to the console, like in Java

(define x 1)

(define y 341)

(define f

 (let ([y x])

 (begin (println y)

 (lambda (z)

 (begin (set! x (+ x z))

 x)))))

(println (f 1))

(println (f 2))

(println (f 3))

; write output below

2

 Name: ________________________________ netid : ________________________

(B)​ What is ​ans​ bound to after the following program executes?

(define (split l)

 (letrec ([loop (lambda (xs ys zs)

 (if (null? xs)

 (cons ys zs)

 (loop (cdr xs) zs (cons (car xs) ys))))])

 (loop l null null)))

(define ans (car (split (list 1 2 3 4)))

ans = ___

(C)​ What does the underlined expression evaluate to?

(define-syntax binary-search

 (syntax-rules ()

 [(binary-search (node left right))

 (struct left (node right x))]))

(binary-search (+ x y))

(define y (x 1 2 3))

(+ (x-+ y) (x-x y))

Result of underlined expr = ___________________________________

3

 Name: ________________________________ netid : ________________________

QUESTION 2 (30 points) ​ ​(Streams)

Recall that a stream is a thunk that returns a pair where the ​cdr​ is a stream.

(A)​ Write a Racket function ​incrementor​ which takes two arguments, ​x​ and ​f​. You
can assume ​f​ is a function which takes two arguments. ​incrementor​ should return a
stream where the ​n​th value (starting at 1) is the result of calling ​f​ with first argument ​x
and second argument ​n​. ​Our sample solution is 4 lines.

For example:

(incrementor 3 (lambda (x n) (+ x n)))

Should return a stream whose first five values will be: ​4, 5, 6, 7, 8

(define (incrementor x f)

)

4

 Name: ________________________________ netid : ________________________

(B)​ Write a Racket function ​slicer​ whose first argument ​s​ is assumed to be a stream
and whose second argument ​n​ is assumed to be a positive integer (> 0). It should return
a stream that consists of every ​n​th element of ​s​. ​Our sample solution is 7 lines.

For example:

(slicer (incrementor 3 (lambda (x n) (+ x n))) 2)

Should return a stream whose first three values are: ​5, 7, 9

It does not matter when you choose to evaluate the passed in stream ​s​, so long as the
resulting stream is correct.

(define (slicer s n)

)

5

 Name: ________________________________ netid : ________________________

(C)​ Define ​multiple-streams​ to be a “stream of streams” where the ​n​th stream
(starting at 1) of ​multiple-streams​ is another stream containing every multiple of ​n​,
starting at ​n​.

Use only ​incrementor​ and ​slicer​ from parts (A) and (B) above, numbers, variables,
+,​ and ​lambda​. ​Our sample solution is 4 lines.

For example, the first element of ​multiple-streams ​should be a stream of all
multiples of 1:

1, 2, 3, 4, 5, …

The second element of ​multiple-streams ​should be a stream of all multiples of 2:

2, 4, 6, 8, 10, …

(define multiple-streams

)

6

 Name: ________________________________ netid : ________________________

(D)​ After evaluating the following code, assuming parts (A - C) work correctly, what is
foo​ bound to?

(define foo

 (* (car ((cdr ((cdr ((car ((cdr (multiple-streams))))))))))

 (car ((cdr ((car ((cdr ((cdr (multiple-streams))))))))))))

foo = ___

7

 Name: ________________________________ netid : ________________________

QUESTION 3 (30 points) ​ ​(MUPL Interpreter)

Consider the following subset of the MUPL interpreter from homework. In this question
we will consider a new feature: a ​subtract​ struct for subtracting two ​int​ expressions.

(struct var (string)) ;; a variable, e.g., (var "foo")

(struct int (num)) ;; a constant number, e.g., (int 17)

(struct add (e1 e2)) ;; add two expressions (e1 + e2)

(struct ifnz (e1 e2 e3)) ;; if not zero e1 then e2 else e3

(struct mlet (var e body)) ;; a local binding (let var = e in body)

(struct subtract (e1 e2)) ;; subtract e2 from e1 (e1 - e2)

(define (envlookup env str) ...)

(define (eval-under-env e env)

 (cond [(var? e) ...]

 [(int? e) ...]

 [(add? e) ...]

 [(ifnz? e) ...]

 [(mlet? e) ...]

 [(subtract? e) ...]

 [#t (error (format "bad MUPL expression: ~v" e))]))

 (define (eval-exp e) (eval-under-env e null))

● An ​int ​ evaluates to itself and a ​var ​ evaluates to the value it is bound to in the
environment.

● An ​add ​ evaluates its subexpressions and, assuming they evaluate to ​int ​s, produces
the ​int ​ that is their sum. Gives the error ​"​MUPL addition applied to
non-number ​"​ if not given two ​int ​s.

● For ​(ifnz e1 e2 e3), e1 ​ is first evaluated to a value ​v. ​ If ​v ​ is an ​int ​ not equal to
0, then the result is evaluating ​e2 ​. If ​v ​ is 0, then then the result is evaluating e3. If ​v
does not evaluate to an ​int, ​ then gives the error ​"​MUPL ifnz applied to
non-number ​"​.

● An ​mlet ​ evaluates its first subexpression to a value ​v ​, then evaluates the second
subexpression in an environment extended to map the given name to ​v ​.

● A ​subtract ​ is just like an ​add ​, but it subtracts instead of adding.

● Interpreting anything else gives the error ​"​bad MUPL expression: ~v ​"​ where ​"​~v ​"
is replaced by whatever was passed into the interpreter.

8

 Name: ________________________________ netid : ________________________

For each sub-problem, consider a buggy ​subtract​ implementation, and give the
result bound to ​foo​ after evaluating this:

(define foo (eval-exp (subtract (add (int 15) (int 8)) (int 26))))

(Write the MUPL error message from the previous page if it raises an error in the
interpreter, “exception” if it raises a Racket exception, and “does not halt” if it
theoretically runs forever)

a) [(subtract? e) (let ([v1 (eval-under-env (subtract-e1 e) env)]

 [v2 (subtract-e2 e)])

 (eval-under-env (add v1 (- (int-num v2))) env))]

Result: ​__

b) [(subtract? e) (let ([v1 (subtract-e1 e)]

 [v2 (eval-under-env (subtract-e2 e) env)])

 (int (- (int-num (eval-under-env (add v1 v2) env)))))]

Result: ​__

c) [(subtract? e) (eval-under-env

 (add (subtract-e1 e)

 (subtract (int 0) (subtract-e2 e))) env)]

Result: ​__

9

 Name: ________________________________ netid : ________________________

d) [(subtract? e) (let ([v1 (subtract-e1 e)] [v2 (subtract-e2 e)])

 (eval-under-env

 (ifnz v2

 (add (int (- 1))

 (subtract v1 (add (int (- 1)) v2)))

 v1) env))]

Result: ​__

e) [(subtract? e) (eval-under-env

 (mlet "a" (subtract-e1 e)

 (mlet "b" (subtract-e2 e)

 (int (- (int-num (var "a"))

 (int-num (var "b")))))) env)]

Result: ​__

f) Write a ​subtract​ branch for the interpreter that works as described above. Do not
worry about giving an error if not given two ​int​s.

[(subtract? e)

]

10

 Name: ________________________________ netid : ________________________

QUESTION 4 (15 points) ​ ​(Ruby Subclasses)

Consider a simple Calculator class which stores the “current result” in instance variable
@val and supports addition and subtraction:

class Calculator

 attr_accessor :val

 def initialize(val)

 @val = val

 end

 def add(val)

 @val = @val + val

 @val

 end

 def subtract(val)

 @val = @val - val

 @val

 end

end

On the following page, implement a subclass CalculatorUndo which provides an​ undo

method. ​undo ​ should return the current value of ​@val​ and restore ​@val​ to its previous

value. You may ignore the case that calls ​undo ​ when there are no operations to undo.

Please follow good OOP style and use calls to ​super​ as appropriate.

For example:

c = CalculatorUndo.new(5) # initially, @val = 5

c.add(4) # now @val = 9

c.subtract(7) # now @val = 2

c.add(9) # now @val = 11

c.undo # returns 11, now @val = 2

c.undo # returns 2, now @val = 9

11

 Name: ________________________________ netid : ________________________

class CalculatorUndo < Calculator

end

12

 Name: ________________________________ netid : ________________________

QUESTION 5 (20 points) ​ ​(OOP, Mixins, and Porting)

A ​path​ is a sequence of moves. Consider the following Ruby code to represent
single-move paths in directions East, West, North, and South as well as multi-move
paths (ComboPath) which append two paths:

class Path

 def deltaX

 0

 end

 def deltaY

 0

 end

 def deltaXY

 [deltaX, deltaY]

 end

end

class E < Path

 def deltaX

 1

 end

end

class W < Path

 def deltaX

 -1

 end

end

class N < Path

 def deltaY

 1

 end

end

class S < Path

 def deltaY

 -1

 end

end

class ComboPath < Path

 def initialize (p1, p2)

 @p1 = p1

 @p2 = p2

 end

 def deltaX

 @p1.deltaX + @p2.deltaX

 end

 def deltaY

 @p1.deltaY + @p2.deltaY

 end

end

p = ComboPath.new(W.new,

 ComboPath.new(W.new,

 ComboPath.new(N.new,

 ComboPath.new(N.new, E.new))))

pos = p.deltaXY;

(A)​ What is ​pos​ bound to in the code above?

13

 Name: ________________________________ netid : ________________________

As we saw in lecture, Ruby’s ​Enumerable​ mixin adds many useful methods in terms of
the underlying class’s ​each​ method. ​each​ takes no regular arguments and a block that
takes a single argument.

The code below adds ​each ​ method definitions for ​Path​ and ​ComboPath ​objects,
ensuring that if ​p ​is an instance of ​Path​, then ​p.each​ calls its block argument on all
the single-move paths in ​p​ in order. (In order!)

class Path

 include Enumerable

 def each

 yield self

 end

end

class ComboPath

 def each

 @p1.each {|p| yield p }

 @p2.each {|p| yield p }

 end

end

(B)​ Use ​each ​to implement a ​Path​ method ​allPrefixes​ which produces an array of
all the prefixes of a path. For example, given the definition of ​p​ above:

p.allPrefixes

Should return an array with all the prefixes of ​p​, i.e., an array equivalent to:

[W.new

, ComboPath.new(W.new, W.new)

, ComboPath.new(W.new,

 ComboPath.new(W.new, N.new))

, ComboPath.new(W.new,

 ComboPath.new(W.new,

 ComboPath.new(N.new, N.new)))

, ComboPath.new(W.new,

 ComboPath.new(W.new,

 ComboPath.new(N.new,

 ComboPath.new(N.new, E.new))))

]

14

 Name: ________________________________ netid : ________________________

Remember that Ruby arrays provide methods like ​size​ to get the number of elements,
push​ to add an element to the end of an array, and indexing from -1 to get the last
element of an array. ​Our sample solution is 10 lines.

class Path

 def allPrefixes

 end

end

15

 Name: ________________________________ netid : ________________________

(C)​ Add method definitions (indicate what classes you are adding them to—it can be a
single method added to a single class) such that if ​p​ is an instance of any subclass of
Path​, then ​p.furthestWest​ returns the smallest “deltaX” value reached by any prefix
of ​p​. Note that for the definition of ​p​ above, ​p.furthestWest ​should return -2.

16

 Name: ________________________________ netid : ________________________

QUESTION 6 (18 points) ​ ​(Type Systems)

A type system is ​sound​ if it accepts (can type check) ​only​ programs that will never have
any runtime type mismatch errors. That is, a sound type system may reject programs
which are actually safe.

Conversely, a type system is ​complete​ if ​all​ programs that never have any runtime type
mismatch errors are always accepted. That is, a complete type system may accept
programs that are not safe.

For each part below, indicate whether the proposed type system is Sound, Complete,
Both, or Neither. You do not need to explain your answers.

(a) A type system that rejects all programs

(b) A type system that accepts all programs

(c) Java’s type system extended to allow any two types to be subtypes of each other

(d) A type system for Racket which rejects (​+ 1 (list 1))​ but accepts all other

programs

(e) SML's type system extended so that ​1 + (if false then [1] else 1)
has type int

17

 Name: ________________________________ netid : ________________________

(f) Consider a small Racket-like programming language with ​+​, ​if​, ​#t​, ​#f​, integer
constants, and one-argument lambdas. Its type system has the following rules:

(i) The (only) types are ​bool​, ​int​, and ​fun

(ii) #t​ and ​#f​ have type ​bool

(iii) Any integer constant has type ​int

(iv) If ​e1​ and ​e2​ have type ​int​, then the expression ​(+ e1 e2)​ has type ​int

(v) If ​e1​ has type ​bool​ and there’s some type ​T​ such that ​e2​ and e3 both
have type ​T​, then the expression ​(if e1 e2 e3)​ has type ​T​.

(vi) The expression ​(lambda (​x​) e)​ has type ​fun​ for any variable ​x​.

(vii) If ​f​ has type ​fun​ and there’s some type ​T​ such that ​e​ has type ​T​,
then ​(f e)​ has type ​T​.

(viii) All programs which can’t be typed by the above rules are rejected.

18

 Name: ________________________________ netid : ________________________

QUESTION 7 (24 points) ​ ​(Subtyping)

Consider a language like in lecture containing (1) records with mutable fields, (2)
higher-order functions, and (3) subtyping.

Recall that a subtyping relationship is sound if it would not allow a program to
type-check that could then try to access a field in a record that did not have that field.

(A)​ Indicate T if the proposed subtyping is sound, otherwise indicate F. You do not need
to explain your answers.

 T / F

a

{f2 : string}

is a subtype of

{}

b

{f1 : string, f2 : {g1 : string, g2 : int} }

is a subtype of

{f1 : string, f2 : {g2 : int, g1 : string} }

c

string -> int

is a subtype of

string -> int

d

{f2 : {g1: int}} -> string

is a subtype of

{f2 : {g1: int}, f3 : string} -> string

e

{f1 : int} -> {f1 : string, f2 : {g1 : int}}

is a subtype of

{f1 : int, f3 : int} ->

 {f1 : string, f2 : {g1 : int, g2 : string}}

19

 Name: ________________________________ netid : ________________________

f

{f1 : int} ->

 {f1 : string, f2 : {g1 : int, g2: string}}

is a subtype of

{f1 : int, g3: string} ->

 {f1 : string, f2 : {g1 : int}}

 ​(B)​ Assume we change the language so that only fields of type ​int​ and ​string​ are
mutable, i.e., it is impossible to change the value of fields containing records.

Which, of your answers to part A change (check any that change)?

 Change?

a

b

c

d

e

f

20

 Name: ________________________________ netid : ________________________

Extra Credit

EC1)
Consider the following code

(struct sml (functional style) #:transparent #:mutable)

(define (typecheck! x)

 (if (null? x)

 null

 (let ([h (car x)])

 (begin

 (set-sml-style! h (- 2 (sml-style h)))

 (cons h (typecheck! (cdr x)))))))

Fill in the blank so that all calls to ​equal?​ in the following program will return ​#t

(define djg

)

(equal? (sml-style (car djg)) 0)

(equal? (sml-style (car (cdr djg))) 0)

(typecheck! djg)

(equal? (sml-style (car djg)) 0)

(equal? (sml-style (car (cdr djg))) 0)

21

 Name: ________________________________ netid : ________________________

EC2)​ Fill in the blanks to make this program evaluate to ​"racket"

; S takes in function f and g and an argument x

; and applies the function (f x) to (g x)

(define S

 (lambda (f g x)

 ((f x) (g x)))

(define K

 (lambda (x)

 (lambda (y) x)))

(let ([a __]

 [b __])

 (S (K a)

 (K b)

 (S K K b)))

22

 Name: ________________________________ netid : ________________________

EC3)​ What variables must be previously defined for the following program to run?
Include no more variable names than necessary.

(define-syntax by

 (syntax-rules (sally)

 [(by a (t (sally) c)) (c a a t)]))

(define-syntax sea-shells

 (syntax-rules (the)

 [(sea-shells (the sea-shore) sally seas)

 (let ([sea-shore 2] [seas 5])

 (+ seas sally))]))

(by (the sea-shore)

 (sells (sally)

 sea-shells))

23

