
Name: __ Student ID #: ________________

Page 1 of 10

CSE 341 Summer 2019 Final Exam
August 23, 2019

Do not turn the page until you are instructed to do so.

Rules/Guidelines:

 You must stop working promptly when time is called at 1:00pm. Any modifications to your exam (writing or

erasing) will result in a penalty.

 This exam is closed-book, closed-note, and closed-device with the exception of both sides of one 8.5x 11” piece of

paper.

 There are 85 points distributed unevenly among 4 multi-part questions.

 The exam is printed double-sided, with 10 numbed pages, none of which are intentionally blank.

 If you abandon one answer and write another, clearly cross out the answer(s) you do not want graded and draw a

circle or box around the answer you do want graded. When in doubt, we will grade a circled/boxed answer, or the

answer that appears nearest to the question text if no answer is circled/boxed.

 If you write an answer on scratch paper, please both clearly label which question you are answering on the scratch

paper and also clearly indicate on the question page that your answer is on scratch paper. Staple all scratch paper

to the end of the exam before turning in.

Advice:

 Read all questions carefully. Be sure you understand the question before you begin your answer.

 The questions are not necessarily in order of difficulty. Feel free to skip around. Be sure you are able to at least

attempt every question.

 Work on easier questions first, including the easiest parts of each question. Do not feel the need to answer all parts

of one question before moving on to another. You can always circle back.

 Write clearly and legibly. We cannot award credit for answers we cannot read.

 Write down any thoughts or intermediate steps so we can award partial credit, but be sure to clearly indicate your

final answer.

 If you have questions, raise your hand to ask. The worst that can happen is we will say “I can’t answer that.”

 Ask questions as soon as you have them. Do not wait until you have several questions at once.

 Relax. You are here to learn.

Point Distribution:

Problem 1 2 3 4 Total

Points 22 18 19 26 85

Name: __ Student ID #: ________________

Page 2 of 10

1. (Racket Programming – 22 points)

a) Write a Racket function flatten that takes a list as an argument and returns another list. The result list should

contain no sub-lists (that is, no elements that are themselves lists), but should otherwise contain all the same

values in the same order as the argument list. For example, (flatten (list 1 2 (list 3 4 5) 6))

should evaluate to '(1 2 3 4 5 6). You may assume the argument list does not contain any cons cells that are

not lists and does not contain any structs.

b) Consider the following function, assuming flatten works as described above:

(define (mystery xs)

 (cond [(null? xs) xs]

 [(list? (car xs)) (cons (flatten (car xs)) (mystery (cdr xs)))]

 [#t (cons (car xs) (mystery (cdr xs)))]))

What do each of the following calls evaluate to?

i. (mystery (list 1 2 (list 3 4 5) 6))

ii. (mystery (list (list 1 2) (list 3 4 (list 5 6))))

iii. (mystery (list (list 1 (list 2 3) (list 4 5 6))))

iv. (mystery (list (list 1 (list 2 null (list 3)) (list 4 5 6))))

c) Give an example of a non-null list xs such that (flatten xs) and (mystery xs) evaluate to the same

result.

d) Give an example of a non-null list ys such that (flatten ys) and (mystery ys) DO NOT evaluate to the

same result.

Name: __ Student ID #: ________________

Page 3 of 10

2. (Thunks and Streams – 18 points) As in class, we define a stream to be a thunk that when called returns a pair

where the cdr of the pair is a stream. We assume all streams are pure (no printing, mutation, etc.). Assume the

following streams are defined:

 nats = 1, 2, 3, 4, 5, ... (the natural numbers)

 evens = 2, 4, 6, 8, 10, ... (the positive even numbers)

 negs = -1, -2, -3, -4, -5, ... (the negative integers)

a) Write a Racket function weave-streams that takes two stream arguments, s1 and s2, and returns a stream.

The resulting stream should contain alternating elements from the two argument streams. That is, the odd-

numbered elements of the result stream should be elements (in order) from s1, and the even-numbered elements

of the result stream should be elements (in order) from s2.

For example, (weave-streams nats negs) would represent 1, -1, 2, -2, 3, -3,

b) Consider the following Racket function:

(define (every-other s)

 (letrec ([loop (lambda (s)

 (lambda () (cons (car (s)) (loop (cdr ((cdr (s))))))))])

 (loop s)))

i. What does (every-other nats) evaluate to? You may either describe the result in 1 precise English

sentence or give a clear, unambiguous numerical representation of the values in the result.

ii. Using only the streams above and standard Racket functions, fill in the blank so that evens2 is bound to a

stream representing the same values as evens?

(define evens2 (every-other ____________________))

Name: __ Student ID #: ________________

Page 4 of 10

c) Use every-other to write a Racket function split-stream that takes a stream as an argument and returns a

pair of streams such that the first stream in the result pair contains the 1st, 3rd, 5th, etc. of the argument stream and

the second stream in the result pair contains the 2nd, 4th, 6th elements of the argument stream.

For example, (split-stream evens) would return the pair (s1 . s2) where s1 represents the values 2,

6, 10, 14, ... and s2 represents the values 4, 8, 12, 16,

Name: __ Student ID #: ________________

Page 5 of 10

3. (Interpreter Implementation – 19 points) Here is some of the code we provided you for Homework 5 (MUPL).

(struct var (string) #:transparent) ;; a variable, e.g., (var "foo")

(struct int (num) #:transparent) ;; a constant number, e.g., (int 17)

(struct add (e1 e2) #:transparent) ;; add two expressions

(struct isgreater (e1 e2) #:transparent) ;; if e1 > e2 then 1 else 0

(struct ifnz (e1 e2 e3) #:transparent) ;; if not zero e1 then e2 else e3

(struct fun (nameopt formal body) #:transparent) ;; a recursive(?) 1-argument function

(struct call (funexp actual) #:transparent) ;; function call

(struct mlet (var e body) #:transparent) ;; a local binding (let var = e in body)

(struct apair (e1 e2) #:transparent) ;; make a new pair

(struct first (e) #:transparent) ;; get first part of a pair

(struct second (e) #:transparent) ;; get second part of a pair

(struct munit () #:transparent) ;; unit value -- good for ending a list

(struct ismunit (e) #:transparent) ;; if e1 is unit then 1 else 0

(define (envlookup env str)

 (cond [(null? env) (error "unbound variable during evaluation" str)]

 [(equal? (car (car env)) str) (cdr (car env))]

 [#t (envlookup (cdr env) str)]))

(define (eval-under-env e env)

 (cond [(var? e) (envlookup env (var-string e))]

 [(add? e)

 (let ([v1 (eval-under-env (add-e1 e) env)]

 [v2 (eval-under-env (add-e2 e) env)])

 (if (and (int? v1) (int? v2))

 (int (+ (int-num v1) (int-num v2)))

 (error "MUPL addition applied to non-number")))]

 ...))

Assume all the not-shown pieces are implemented correctly, including raising an appropriate error message if a

subexpression evaluates to the wrong type of MUPL value.

In this question, we extend the MUPL language with this expression form:

(struct mnot (e) #:transparent)

It has the following semantics:

a) The lone subexpression is evaluated exactly once.

b) If the subexpression evaluates to the integer 0, the mnot evaluates to the integer 1.

c) If the subexpression evaluates to any integer that is not 0, the mnot evaluates to the integer 0.

d) If the subexpression evaluates to something other than an integer, evaluating the mnot raises an error.

Name: __ Student ID #: ________________

Page 6 of 10

a) Consider this incorrect implementation of mnot in “the big cond” of eval-under-env:

 [(mnot? e)

 (let ([v (eval-under-env (mnot-e e) env)])

 (if (= (int-num v) 0)

 (int 1)

 (int 0)))]

For each of the following expressions, determine which of the following will occur:

A. The interpreter will produce the correct result

B. The interpreter will produce an incorrect result

C. The interpreter will raise a MUPL error

D. The interpreter will raise a Racket exception

E. The interpreter will not terminate

(eval-exp (mnot (int 0))) A B C D E

(eval-exp (mnot (add (int 1) (int 0)))) A B C D E

(eval-exp (mlet "p" (apair (int 0) (int 1)) (mnot (var "p")))) A B C D E

(eval-exp (mlet "p" (apair (int 1) (int 0)) (mnot (first (var "p"))))) A B C D E

(eval-exp (mlet "x" (int -4)

 (mlet "y" (int 3)

 (ifnz (mnot (add (var "x") (var "y")))

 (int 3)

 (int 4)))))

A B C D E

b) Repeat part (a) for this incorrect implementation of mnot:

 [(mnot? e)

 (let ([v (eval-under-env (mnot-e e) env)])

 (if (int? v)

 (if (> (int-num v) 0)

 (int 0)

 (int 1))

 (error "MUPL mnot applied to non-int")))]

(eval-exp (mnot (int 0))) A B C D E

(eval-exp (mnot (add (int 1) (int 0)))) A B C D E

(eval-exp (mlet "p" (apair (int 0) (int 1)) (mnot (var "p")))) A B C D E

(eval-exp (mlet "p" (apair (int 1) (int 0)) (mnot (first (var "p"))))) A B C D E

(eval-exp (mlet "x" (int -4)

 (mlet "y" (int 3)

 (ifnz (mnot (add (var "x") (var "y")))

 (int 3)

 (int 4)))))

A B C D E

Name: __ Student ID #: ________________

Page 7 of 10

c) Write a correct implementation of the mnot case in the “the big cond”:

d) Now suppose we did not implement the mnot expression in the MUPL interpreter. Write a Racket function

mnot-macro that acts as MUPL macro and simulates the behavior of mnot. Your function should take a MUPL

expression e as an argument and produce a new MUPL expression that is equivalent to (mnot e), but would

evaluate in the original MUPL interpreter.

Name: __ Student ID #: ________________

Page 8 of 10

4. (Functional v. object-oriented decomposition – 26 points) Consider the following SML code:

datatype Train = CargoCar of string

 | PassengerCar of int

 | MultiCar of Train * Train

fun toString t =

 case t of

CargoCar _ => "Cargo"

 | PassengerCar _ => "Passengers"

 | MultiCar(t1, t2) => toString t1 ^ ":-:" ^ toString t2

fun numPassengers t =

 case t of

 PassengerCar n => n

 | MultiCar (t1, t2) => (numPassengers t1) + (numPassengers t2)

 | _ => 0

fun numCars t =

 case t of

 MultiCar (t1, t2) => (numCars t1) + (numCars t2)

 | _ => 1

a) Port the SML code to equivalent Ruby code using good object-oriented style. In particular, follow these guidelines:

 Define four classes: a superclass Train and three subclasses CargoCar, PassengerCar, and

MultiCar.

 Define an initialize method in three of the five classes.

 Do not have any unnecessary code duplication.

 Do not use mutation, is_a?, or any standard library classes.

Our solution is approximately 45-50 lines, but all lines are short and many consist only of end. Write your code on

the next page.

Name: __ Student ID #: ________________

Page 9 of 10

Write your solution to part (a) here:

Name: __ Student ID #: ________________

Page 10 of 10

b) Add one or more method definitions (including indicating to which class(es) you are adding them) so that Train

and all its subclasses can be compared using the operators defined in the Comparable mixin. Trains should be

compared based on number of cars; that is, a Train with fewer cars is considered “less than” a Train with more

cars.

c) Consider the following added code, which includes the Enumerable mixin on Train and its subclasses:

class Train

 include Enumerable

 def each

 yield self

 end

end

class MultiCar < Train

 include Enumerable

 def each

 @t1.each {|c| yield c}

 @t2.each {|c| yield c}

 end

end

Recall that the Enumerable mixin uses each to implement the method count, which takes a block argument

and produces the number of elements for which the block produces true.

Write a single line of Ruby code that will produce the number of cars in a Train t with a positive number of

passengers. You may not use is_a? in your solution.

