
Name:

CSE341 Spring 2019, Midterm Examination
May 3, 2019

Please do not turn the page until 12:30.

Rules:

• The exam is closed-book, closed-note, etc. except for one side of one 8.5x11in piece of paper.

• Please stop promptly at 1:20.

• There are 100 points, distributed unevenly among 6 questions (all with multiple parts):

• The exam is printed double-sided.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit. But clearly indicate what
is your final answer.

• The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the
questions.

• If you have questions, ask.

• Relax. You are here to learn.

Name:

1. (23 points) This problem uses this datatype binding for trees where all the data is at the leaves and
each leaf can hold an int or a string.

datatype tree = I of int | S of string | N of tree * tree

(a) Give an example of a value of type tree that contains exactly three ints and zero strings.

(b) Define a function sum of type tree -> int that computes the sum of all the ints contained in the
tree (ignoring any strings).

(c) Define a function stringify of type tree -> tree that returns a result that is like its argument
except everywhere the argument has some I i, the result has a S s where s is the string repre-
sentation of i. For example, stringify (N(I 3, S "hi")) = N(S "3", S "hi"). Use library
function Int.toString of type int -> string, which returns the string representation of its
argument.

(d) Define a function intify of type tree -> tree that returns a result that is like its argu-
ment except everywhere the argument has some S s and the s is the string representation
of a number, the result has an I i where s is the string representation of i. For example,
intify (N(I 3, S "hi")) = N(I 3, S "hi") and intify (N(S "3", S "hi")) = N(I 3, S "hi").
Use library function Int.fromString of type string -> int option, which returns an option
containing the number represented by the string or NONE if the string does not represent a number.

Name:

More room if needed for Problem 1.

Name:

2. (17 points) This problem uses the same datatype binding as problem 1 and an incorrect function
that is supposed to evaluate to true if and only if its argument contains exactly two ints.

datatype tree = I of int | S of string | N of tree * tree

fun has_exactly_two_ints t = (* this is buggy! *)

case t of

(* 1 *) N(I _, I _) => true

(* 2 *) | N(t1, t2) => has_exactly_two_ints t1 orelse has_exactly_two_ints t2

(* 3 *) | S _ => false

(* 4 *) | I _ => false

(a) Give an example tree where has_exactly_two_ints evaluates to true correctly, i.e., the tree

has exactly two ints.

(b) Give an example tree where has_exactly_two_ints evaluates to true incorrectly, i.e., the tree

does not have exactly two ints.

(c) Give an example tree where has_exactly_two_ints evaluates to false correctly, i.e., the tree

does not have exactly two ints.

(d) Give an example tree where has_exactly_two_ints evaluates to false incorrectly, i.e., the tree
has exactly two ints.

(e) For each of i–iii below, choose from the options A–D:

A. The function is still buggy in exactly the same way.

B. The function is still buggy but is not equivalent to the version above.

C. The function is now correct.

D. The function no longer type-checks.

Do not consider that the first branch of a case expression has no | character and the others do.
That is, assume that syntactic detail is fixed.

i. The branch labeled (* 2 *) is moved to before line (* 1 *) (so the order is 2, 1, 3, 4).

ii. The branch labeled (* 3 *) is moved to before line (* 1 *) (so the order is 3, 1, 2, 4).

iii. The branch labeled (* 4 *) is moved to before line (* 1 *) (so the order is 4, 1, 2, 3).

Name:

3. (12 points) This problem asks you to give good error messages for why a short ML program does not
type-check or has a syntax error. A specific phrase or short sentence is plenty.

For example, for the program,

fun f1 (x,y) = if x then y + 1 else x

a fine answer would be, “the then-branch-expression and the else-branch-expression do not have the
same type.”

Give good error messages for each of the following:

(a) fun f1 (x,y) =

let

val y = x

val x = g 9

fun g z = x * y

in

x + y + (g 7)

end

(b) fun f2 (x,y,z) =

if x=y

then 0

else if y=z

then 2

else if y > 3

then 3

(c) fun f3 xs =

case xs of

[] => 0::[]

| x::[] => x+1

| x::xs => (x+1)::(f3 xs)

(d) fun f4 (x,y) =

if x > 0.0 orelse x = y

then y

else 3.0

Name:

4. (18 points) Consider this ML function

fun foo f g xs =

case xs of

[] => []

| x::xs’ =>

let

val (y1,i1) = f x

val (y2,i2) = g x

in

(if i1 > i2 then y1 else y2)::(foo f g xs’)

end

(a) What does foo (fn x => (0,x*2)) (fn x => (x+1,x+1)) [0,2,1,3] evaluate to?

(b) What is the type of foo?

(c) Complete this alternate definition of foo so that it is equivalent to the function above. (Hint: you
need several short lines of code.)

fun foo f g = List.map (fn x =>

)

(d) What is the type of foo (fn x => (x,x)) (fn x => (0-x,0-x)) ?

(e) In approximately one English sentence, what does the function produced by
foo (fn x => (x,x)) (fn x => (0-x,0-x)) compute?

Name:

5. (9 points) Recall List.filter has type (’a -> bool) -> ’a list -> ’a list. Consider this
function of type (’a -> bool) -> (’a -> bool) -> ’a list -> ’a list:

fun filter2 f g xs =

case xs of

[] => []

| x::xs => if f x andalso g x

then x :: (filter2 f g xs)

else filter2 f g xs

(a) Is the recursive call in the then-branch above a tail call?

(b) Is the recursive call in the else-branch above a tail call?

(c) Is the call to f in the body of filter2 a tail call?

(d) Is the call to g in the body of filter2 a tail call?

(e) Reimplement filter2 by filling in the blank below:

fun filter2 f g = List.filter __

Name:

6. (21 points) This problem considers two ML modules Direction1 and Direction2, and a signature
DIRECTION. They are on the next page. Separate that page from your exam and do not turn it in.

Provided information: Under the signature DIRECTION, the two modules are equivalent to each other.

(a) If we deleted the turn function in Direction2 and replaced it with a copy of the turn function in
Direction1, would the program (A) no longer type-check, (B) still type-check and have equivalent
modules, or (C) type-check but with modules not equivalent?

(b) If we deleted the turn function in Direction1 and replaced it with a copy of the turn function in
Direction2, would the program (A) no longer type-check, (B) still type-check and have equivalent
modules, or (C) type-check but with modules not equivalent?

(c) Given signature DIRECTION, consider client code outside of module Direction2 (for the rest of
Problem 6, Direction1 is irrelevant).

i. If possible, fill in the blank so that nope evaluates to false. If impossible, write “impossible.”

val x = __________________

val nope = Direction2.isNS x orelse Direction2.isEW x

ii. If possible, fill in the blank so isWest correctly implements a function that evaluates to
true if and only if its argument is Direction2’s representation of west. If impossible, write
“impossible.”

fun isWest x = ________________

iii. If possible, fill in the blank so yep evaluates to true. If impossible, write “impossible.”

val west = _________________

val yep = Direction2.isEW west

(d) Repeat part (c) but assuming the first line of DIRECTION is type t = int:

i. If possible, fill in the blank so that nope evaluates to false. If impossible, write “impossible.”

val x = ___________________

val nope = Direction2.isNS x orelse Direction2.isEW x

ii. If possible, fill in the blank so isWest correctly implements a function that evaluates to
true if and only if its argument is Direction2’s representation of west. If impossible, write
“impossible.”

fun isWest x = ________________

iii. If possible, fill in the blank so yep evaluates to true. If impossible, write “impossible.”

val west = _________________

val yep = Direction2.isEW west

(e) Repeat part (c) with t again abstract but assuming the line val north : t is removed.

i. If possible, fill in the blank so that nope evaluates to false. If impossible, write “impossible.”

val x = ___________________

val nope = Direction2.isNS x orelse Direction2.isEW x

ii. If possible, fill in the blank so isWest correctly implements a function that evaluates to
true if and only if its argument is Direction2’s representation of west. If impossible, write
“impossible.”

fun isWest x = ________________

iii. If possible, fill in the blank so yep evaluates to true. If impossible, write “impossible.”

val west = _________________

val yep = Direction2.isEW west

These definitions are used in Problem 6. Rip this page out from the rest of the exam. Do not put
answers on this page and do not turn it in.

signature DIRECTION =

sig

type t

val turn : t * int -> t

val north : t

val isNS : t -> bool

val isEW : t -> bool

end

structure Direction1 :> DIRECTION =

struct

datatype t = North | East | South | West

fun turnClockwise x = case x of North => East | East => South | South => West | West => North

fun turnCounterClockwise x = case x of North => West | West => South | South => East | East => North

fun turn (x,n) =

if n = 0

then x

else if n > 0

then turn(turnClockwise x, n-1)

else turn(turnCounterClockwise x, n+1)

val north = North

fun isNS x =

case x of

North => true

| South => true

| _ => false

fun isEW x =

case x of

East => true

| West => true

| _ => false

end

structure Direction2 :> DIRECTION =

struct

type t = int (* 0 = North, 1 = East, 2 = South, 3 = West *)

fun turnClockwise x = if x=3 then 0 else x+1

fun turnCounterClockwise x = if x=0 then 3 else x-1

fun turn (x,n) = (x+n) mod 4

val north = 0

fun isNS x = (x = 0) orelse (x=2)

fun isEW x = (x = 1) orelse (x=3)

end

