Final Exam

As also indicated in class-list email:

• Next Thursday, 8:30-10:20AM
• Intention is to focus ~ 80% on material since the midterm
 – Including topics on homeworks and not on homeworks
 – Also ~ 20% ML, just as the post-midterm course has had
• You will need to write code and English

Victory Lap

A victory lap is an extra trip around the track
 – By the exhausted victors (us) 😊

Review course goals
 – Slides from Introduction and Course-Motivation

Some big themes and perspectives
 – Stuff for five years from now more than for the final

Maybe time for open Q&A

Course evals already done, but feel free to leave feedback!

Thank you!

• Huge thank-you to your TAs
 – Great team effort
 – Really invested in a successful course
Thank you!

• And a huge thank you to all of you
 – Great attitude about a very different view of software
 – Good class attendance and questions
 – Occasionally laughed at stuff 😊

• Computer science ought to be challenging and fun!

[From Lecture 1]

• Many essential concepts relevant in any programming language
 – And how these pieces fit together

• Use ML, Racket, and Ruby languages:
 – They let many of the concepts “shine”
 – Using multiple languages shows how the same concept can “look different” or actually be slightly different
 – In many ways simpler than Java

• Big focus on functional programming
 – Not using mutation (assignment statements) (!)
 – Using first-class functions (can’t explain that yet)
 – But many other topics too

[From Lecture 1]

Learning to think about software in this “PL” way will make you a better programmer even if/when you go back to old ways

It will also give you the mental tools and experience you need for a lifetime of confidently picking up new languages and ideas

[Somewhat in the style of The Karate Kid movies (1984, 2010)]

[From Course Motivation]

• No such thing as a “best” PL

• Fundamental concepts easier to teach in some (multiple) PLs

• A good PL is a relevant, elegant interface for writing software
 – There is no substitute for precise understanding of PL semantics

• Functional languages have been on the leading edge for decades
 – Ideas have been absorbed by the mainstream, but very slowly
 – First-class functions and avoiding mutation increasingly essential
 – Meanwhile, use the ideas to be a better C/Java/PHP hacker

• Many great alternatives to ML, Racket, and Ruby, but each was chosen for a reason and for how they complement each other
SML, Racket, and Ruby are a useful combination for us:

<table>
<thead>
<tr>
<th></th>
<th>dynamically typed</th>
<th>statically typed</th>
</tr>
</thead>
<tbody>
<tr>
<td>functional</td>
<td>Racket</td>
<td>SML</td>
</tr>
<tr>
<td>object-oriented</td>
<td>Ruby</td>
<td>Java</td>
</tr>
</tbody>
</table>

ML: polymorphic types, pattern-matching, abstract types & modules
Racket: dynamic typing, “good” macros, minimalist syntax, eval
Ruby: classes but not types, very OOP, mixins
[and much more]

Really wish we had more time:
Haskell: laziness, purity, type classes, monads
Prolog: unification and backtracking
[and much more]

Benefits of No Mutation

[An incomplete list]

1. Can freely alias or copy values/objects: Unit 1
2. More functions/modules are equivalent: Unit 4
3. No need to make local copies of data: Unit 5
4. Depth subtyping is sound: Unit 8

State updates are appropriate when you are modeling a phenomenon that is inherently state-based
 - A fold over a collection (e.g., summing a list) is not!

Some other highlights

- Function closures are really powerful and convenient…
 - … and implementing them is not magic
- Datatypes and pattern-matching are really convenient…
 - … and exactly the opposite of OOP decomposition
- Sound static typing prevents certain errors…
 - … and is inherently approximate
- Subtyping and generics allow different kinds of code reuse…
 - … and combine synergistically
- Modularity is really important; languages can help

From the syllabus

Successful course participants will:

- Internalize an accurate understanding of what functional and object-oriented programs mean
- Develop the skills necessary to learn new programming languages quickly
- Master specific language concepts such that they can recognize them in strange guises
- Learn to evaluate the power and elegance of programming languages and their constructs
- Attain reasonable proficiency in the ML, Racket, and Ruby languages and, as a by-product, become more proficient in languages they already know
The End

Don't be a stranger!