
CSE	341
Section	7

Winter	2018

Adapted	from	slides	 by Eric	Mullen, Nicholas	 Shahan,	Dan	Grossman,	 and	Tam	Dang

Outline

• LBI	(Language	Being	Implemented)
• LBI	“Macros”
• Eval,	Quote,	and	Quasiquote
• Variable	Number	of	Arguments
• Apply

2

LBI (Language	Being	Implemented)

• Yesterday	in	lecture,	we	saw	we	can	define	a	“Programming	
Language”	inside	racket	by	structs

• We	will	talk	about	how	to	do	evaluation	on	these	LBIs	
tomorrow

• Show	struct definition	examples

3

Macros	Review

• Extend	language	syntax	(allow	new	constructs)
• Written	in	terms	of	existing	syntax
• Expanded	before	language	is	actually	interpreted	or	
compiled

4

How	to	implement	“Macros” in	LBI

• Interpreting	LBI	using	Racket	as	the	metalanguage
• LBI	is	made	up	of	Racket	structs
• In	Racket,	these	are	just	data	types
• Why	not	write	a	Racket	function	that	returns	LBI	
ASTs?

5

LBI	“Macros”

6

(++ (int 7))

(define (++ exp) (add (int 1) exp))

If	our	LBI	Macro	is	a	Racket	function

Expands	to

(add (int 1) (int 7))

Then	the	LBI	code

LBI	“Macros”

• We	are	just	generating	expressions	of	LBI,	so	
expressions	in	LBI	are	still	composed	of	the	original	
structs

• If	we	have	an	eval function,	we	don’t	need	extra	
code	to	evaluate	these	“macros”

7

quote

• Syntactically,	Racket	statements	can	be	thought	of	
as	lists	of	tokens
• (+ 3 4) is	a	“plus	sign”,	a	“3”,	and	a	“4”
• quote-ing	a	parenthesized	expression	produces	a	
list	of	tokens

8

quote Examples

9

(+ 3 4) ; 7
(quote (+ 3 4)) ; '(+ 3 4)
(quote (+ 3 #t)) ; '(+ 3 #t)
(+ 3 #t) ; Error

• You	may	also	see	the	single	quote	‘ character	used	
as	syntactic	sugar

quasiquote

• Inserts	evaluated	tokens	into	a	quote
• Convenient	for	generating	dynamic	token	lists
• Use	unquote to	escape	a	quasiquoteback	to	
evaluated	Racket	code
• A	quasiquote and	quote are	equivalent	unless	
we	use	an	unquote operation

10

quasiquote Examples

11

(quasiquote (+ 3 (unquote(+ 2 2)))) ; '(+ 3 4)
(quasiquote

(string-append
"I love CSE"
(number->string
(unquote (+ 3 338)))))

; '(string-append "I love CSE" (number->string 341))

• You	may	also	see	the	backtick	` character	used	as	
syntactic	sugar	for	quasiquote
• The	comma	character	, is	used	as	syntactic	sugar	
for	unquote

Self	Interpretation

• Many	languages	provide	an	eval function	or	
something	similar
• Performs	interpretation	or	compilation	at	runtime

• Needs	full	language	implementation	during	runtime

• It's	useful,	but	there's	usually	a	better	way
• Makes	analysis,	debugging	difficult

12

eval

• Racket's	eval operates	on	lists	of	tokens
• Like	those	generated	from	quote and	
quasiquote
• Treat	the	input	data	as	a	program	and	evaluate	it

13

eval examples

14

(define quoted (quote (+ 3 4)))
(eval quoted) ; 7
(define bad-quoted (quote (+ 3 #t)))
(eval bad-quoted) ; Error
(define qquoted (quasiquote (+ 3 (unquote(+ 2 2)))))
(eval qquoted) ; 7
(define big-qquoted

(quasiquote
(string-append
"I love CSE"
(number->string
(unquote (+ 3 338))))))

(eval big-qquoted) ; “I love CSE341”

RackUnit

• Unit	testing	is	built	into	the	standard	library
• http://docs.racket-lang.org/rackunit/

• Built	in	test	functions	to	make	testing	your	code	
easier
• Test	for	equality,	check-eq?
• Test	for	True,	check-true
• Test	for	raised	exception,	check-exn
• and	many	more

15

Variable	Number	of	Arguments

• Some	functions	(like	+)	can	take	a	variable	number	
of	arguments
• There	is	syntax	that	lets	you	define	your	own

16

(define fn-any
(lambda xs ; any number of args
(print xs)))

(define fn-1-or-more
(lambda (a . xs) ; at least 1 arg
(begin (print a) (print xs))))

(define fn-2-or-more
(lambda (a b . xs) ; at least 2 args

(begin (print a) (print a) (print xs))))

apply

• Applies	a	list	of	values	as	the	arguments	to	a	
function	in	order	by	position

17

(define fn-any
(lambda xs ; any number of args
(print xs)))

(apply fn-any (list 1 2 3 4))

(apply + (list 1 2 3 4)) ; 10
(apply max (list 1 2 3 4)) ; 4

