
CSE341: Programming Languages

Section 6
What does mutation mean?

When do function bodies run?

Winter 2018

With thanks to: Dan Grossman / Eric Mullen

Agenda

• Let Expressions

• Mutation: Set!

• Delayed Evaluations: Thunks

Winter 2018 2CSE341: Programming Languages

Let

A let expression can bind any number of local variables
– Notice where all the parentheses are

The expressions are all evaluated in the environment from before
the let-expression

– Except the body can use all the local variables of course
– This is not how ML let-expressions work
– Convenient for things like (let ([x y][y x]) …)

Winter 2018 3CSE 341: Programming Languages

(define (silly-double x)
(let ([x (+ x 3)]

[y (+ x 2)])
(+ x y -5)))

Let*

Syntactically, a let* expression is a let-expression with 1 more
character

The expressions are evaluated in the environment produced from
the previous bindings

– Can repeat bindings (later ones shadow)
– This is how ML let-expressions work

Winter 2018 4CSE 341: Programming Languages

(define (silly-double x)
(let* ([x (+ x 3)]

[y (+ x 2)])
(+ x y -8)))

Letrec

Syntactically, a letrec expression is also the same

The expressions are evaluated in the environment that includes all
the bindings

– Needed for mutual recursion
– But expressions are still evaluated in order: accessing an

uninitialized binding raises an error
• Remember function bodies not evaluated until called

Winter 2018 5CSE 341: Programming Languages

(define (silly-triple x)
(letrec ([y (+ x 2)]

[f (lambda(z) (+ z y w x))]
[w (+ x 7)])

(f -9)))

More letrec

• Letrec is ideal for recursion (including mutual recursion)

• Do not use later bindings except inside functions
– This example will raise an error when called

Winter 2018 6CSE 341: Programming Languages

(define (silly-mod2 x)
(letrec
([even? (l(x)(if (zero? x) #t (odd? (- x 1))))]
[odd? (l(x)(if (zero? x) #f (even? (- x 1))))])
(if (even? x) 0 1)))

(define (bad-letrec x)
(letrec ([y z]

[z 13])
(if x y z)))

Local defines

• In certain positions, like the beginning of function bodies, you
can put defines
– For defining local variables, same semantics as letrec

• Local defines is preferred Racket style, but course materials will
avoid them to emphasize let, let*, letrec distinction
– You can choose to use them on homework or not

Winter 2018 7CSE 341: Programming Languages

(define (silly-mod2 x)
(define (even? x)(if (zero? x) #t (odd? (- x 1))))
(define (odd? x) (if (zero? x) #f (even?(- x 1))))
(if (even? x) 0 1))

Top-level

The bindings in a file work like local defines, i.e., letrec
– Like ML, you can refer to earlier bindings
– Unlike ML, you can also refer to later bindings
– But refer to later bindings only in function bodies

• Because bindings are evaluated in order
• Get an error if try to use a not-yet-defined binding

– Unlike ML, cannot define the same variable twice in module
• Would make no sense: cannot have both in environment

Winter 2018 8CSE 341: Programming Languages

REPL

Unfortunate detail:
– REPL works slightly differently

• Not quite let* or letrec
• L

– Best to avoid recursive function definitions or forward
references in REPL

• Actually okay unless shadowing something (you may not
know about) – then weirdness ensues

• And calling recursive functions is fine of course

Winter 2018 9CSE 341: Programming Languages

Optional: Actually…

• Racket has a module system
– Each file is implicitly a module

• Not really “top-level”
– A module can shadow bindings from other modules it uses

• Including Racket standard library
– So we could redefine + or any other function

• But poor style
• Only shadows in our module (else messes up rest of

standard library)

• (Optional note: Scheme is different)

Winter 2018 10CSE 341: Programming Languages

Set!

• Unlike ML, Racket really has assignment statements
– But used only-when-really-appropriate!

• For the x in the current environment, subsequent lookups of x
get the result of evaluating expression e
– Any code using this x will be affected
– Like x = e in Java, C, Python, etc.

• Once you have side-effects, sequences are useful:

Winter 2018 11CSE341: Programming Languages

(set! x e)

(begin e1 e2 … en)

Example

Example uses set! at top-level; mutating local variables is similar

Not much new here:
– Environment for closure determined when function is defined,

but body is evaluated when function is called
– Once an expression produces a value, it is irrelevant how the

value was produced
Winter 2018 12CSE341: Programming Languages

(define b 3)
(define f (lambda (x) (* 1 (+ x b))))
(define c (+ b 4)) ; 7
(set! b 5)
(define z (f 4)) ; 9
(define w c) ; 7

Top-level

• Mutating top-level definitions is particularly problematic
– What if any code could do set! on anything?
– How could we defend against this?

• A general principle: If something you need not to change might
change, make a local copy of it. Example:

Could use a different name for local copy but do not need to

Winter 2018 13CSE 341: Programming Languages

(define b 3)
(define f
(let ([b b])
(lambda (x) (* 1 (+ x b)))))

But wait…

• Simple elegant language design:
– Primitives like + and * are just predefined variables bound to

functions
– But maybe that means they are mutable
– Example continued:

– Even that won’t work if f uses other functions that use things
that might get mutated – all functions would need to copy
everything mutable they used

Winter 2018 14CSE 341: Programming Languages

(define f
(let ([b b]

[+ +]
[* *])

(lambda (x) (* 1 (+ x b)))))

No such madness

In Racket, you do not have to program like this
– Each file is a module
– If a module does not use set! on a top-level variable, then

Racket makes it constant and forbids set! outside the module
– Primitives like +, *, and cons are in a module that does not

mutate them

Showed you this for the concept of copying to defend against mutation
– Easier defense: Do not allow mutation
– Mutable top-level bindings a highly dubious idea

Winter 2018 15CSE 341: Programming Languages

The truth about cons

cons just makes a pair
– Often called a cons cell
– By convention and standard library, lists are nested pairs that

eventually end with null

Passing an improper list to functions like length is a run-time error

Winter 2018 16CSE341: Programming Languages

(define pr (cons 1 (cons #t "hi"))) ; '(1 #t . "hi")
(define lst (cons 1 (cons #t (cons "hi" null))))
(define hi (cdr (cdr pr)))
(define hi-again (car (cdr (cdr lst))))
(define hi-another (caddr lst))
(define no (list? pr))
(define yes (pair? pr))
(define of-course (and (list? lst) (pair? lst)))

The truth about cons

So why allow improper lists?
– Pairs are useful
– Without static types, why distinguish (e1,e2) and e1::e2

Style:
– Use proper lists for collections of unknown size
– But feel free to use cons to build a pair

• Though structs (like records) may be better

Built-in primitives:
– list? returns true for proper lists, including the empty list
– pair? returns true for things made by cons

• All improper and proper lists except the empty list

Winter 2018 17CSE341: Programming Languages

cons cells are immutable

What if you wanted to mutate the contents of a cons cell?
– In Racket you cannot (major change from Scheme)
– This is good

• List-aliasing irrelevant
• Implementation can make list? fast since listness is

determined when cons cell is created

Winter 2018 18CSE341: Programming Languages

Set! does not change list contents

This does not mutate the contents of a cons cell:

– Like Java’s x = new Cons(42,null), not x.car = 42

Winter 2018 19CSE341: Programming Languages

(define x (cons 14 null))
(define y x)
(set! x (cons 42 null))
(define fourteen (car y))

mcons cells are mutable

Since mutable pairs are sometimes useful (will use them soon),
Racket provides them too:

– mcons
– mcar
– mcdr
– mpair?
– set-mcar!
– set-mcdr!

Run-time error to use mcar on a cons cell or car on an mcons cell

Winter 2018 20CSE341: Programming Languages

Delayed evaluation

For each language construct, the semantics specifies when
subexpressions get evaluated. In ML, Racket, Java, C:

– Function arguments are eager (call-by-value)
• Evaluated once before calling the function

– Conditional branches are not eager

It matters: calling factorial-bad never terminates:

Winter 2018 21CSE341: Programming Languages

(define (my-if-bad x y z)
(if x y z))

(define (factorial-bad n)
(my-if-bad (= n 0)

1
(* n (factorial-bad (- n 1)))))

Thunks delay

We know how to delay evaluation: put expression in a function!
– Thanks to closures, can use all the same variables later

A zero-argument function used to delay evaluation is called a thunk
– As a verb: thunk the expression

This works (but it is silly to wrap if like this):

Winter 2018 22CSE341: Programming Languages

(define (my-if x y z)
(if x (y) (z)))

(define (fact n)
(my-if (= n 0)

(lambda() 1)
(lambda() (* n (fact (- n 1))))))

The key point

• Evaluate an expression e to get a result:

• A function that when called, evaluates e and returns result
– Zero-argument function for “thunking”

• Evaluate e to some thunk and then call the thunk

• Next: Powerful idioms related to delaying evaluation and/or
avoided repeated or unnecessary computations
– Some idioms also use mutation in encapsulated ways

Winter 2018 23CSE341: Programming Languages

e

(lambda () e)

(e)

Avoiding expensive computations
Thunks let you skip expensive computations if they are not needed

Great if take the true-branch:

But worse if you end up using the thunk more than once:

In general, might not know many times a result is needed
Winter 2018 24CSE341: Programming Languages

(define (f th)
(if (…) 0 (… (th) …)))

(define (f th)
(… (if (…) 0 (… (th) …))

(if (…) 0 (… (th) …))
…
(if (…) 0 (… (th) …))))

Best of both worlds

Assuming some expensive computation has no side effects, ideally
we would:

– Not compute it until needed
– Remember the answer so future uses complete immediately

Called lazy evaluation

Languages where most constructs, including function arguments,
work this way are lazy languages

– Haskell

Racket predefines support for promises, but we can make our own
– Thunks and mutable pairs are enough… [Friday]

Winter 2018 25CSE341: Programming Languages

