
CSE 341
Section	5

Winter	2018



Midterm	Review!

• Variable	Bindings,	Shadowing,	Let	Expressions
• Boolean,	Comparison	and	Arithmetic	Operations

• Equality	Types
• Types,	Datatypes,	Type	synonyms

• Tuples,	Records	and	Lists
• Case	statement,	Pattern	Matching
• Functions,	Anonymous	Functions,	Higher	Order	
Functions
• Actually	Taking	in	Tuples,	Function	Closures
• Tail	Recursion
• Currying
• Filter,	Map,	Fold

2Winter	2018 CSE	341:	Programming	Languages



Midterm	Review!

• Lexical	Scope	vs	Dynamic	Scope
• Type	Inference,	Polymorphic	Types	and	Type	
Generality
• Modules
• Equivalence

Winter	2018 CSE	341:	Programming	Languages 3



Variable	Bindings

• SML	evaluation	creates	bindings	in	the	environments	

(static	and	dynamic)	rather	than	change	values	store	in	

variables.

• Repeated	Variable	names?

• Shadowing

• Let	Expression	allows	us	to	create	bindings	in	a	smaller	

Scope

Winter	2018 CSE	341:	Programming	Languages 4



Boolean,	Comparison	and	
Arithmetic	Operations
• Boolean	Operators
• andalso,	orelse evaluates	for	booleans only,	they	are	not	

functions	(you	cannot	do	partial	evaluation	with	them)

• not	is	a	function
• - op	not;	

• val it	=	fn :	bool	->	bool

• - List.map not	[true,	true,	false];	

• val it	=	[false,false,true]	:	bool	list

Winter	2018 CSE	341:	Programming	Languages 5



Boolean,	Comparison	and	
Arithmetic	Operations

• Comparison	and	Arithmetic	Operators

• =,	<>,	equality	types

• >,	<,	>=,	<=,	+,	-,	*,	must	take	the	same	type	on	both	

sides

• ‘div’	for	integers,	‘/’	for	reals

• You	cannot	divide	on	integer	by	a	real	or	vice	versa

• Because	these	operators	are	all	functions!

Winter	2018 CSE	341:	Programming	Languages 6



Types,	Datatypes,	Type	synonyms

• Built-in	types
• String,	int,	real,	bool,	records,	lists
• What	about	tuples?

• They	are	just	syntactic	sugar	for	records

• datatype keyword
• Allows	you	to	create	types	by	yourself
• “one	of	type”	and	recursive	type

• type keyword
• “each	of	type”,	just	renaming	the	existing	types

Winter	2018 CSE	341:	Programming	Languages 7



Case	statement,	Pattern	Matching

• Values	and	variables	form	patterns
• SML	is	essentially	creating	variable	bindings	of	the	
variable	with	the	actual	value	in	e0.
• It	is	not	checking	if	the	value	stored	in	the	variable	
equals	to	what’s	in	the	current	environment

Winter	2018 CSE	341:	Programming	Languages 8

case e0 of 
p1 => e1

| p2 => e2 
…

| pn => en



Functions,	Anonymous	Functions,	
Higher	Order	Functions

• Functions	actually	takes	in	a	pattern,	for	example,	

(x	:	int,	y	:	bool).

• By	pattern	matching,	it	creates	bindings	of	variables	

and	values.	Then	the	environment	is	bound

• The	bounded	environment along	with	the	code	

creates	function closure.

Winter	2018 CSE	341:	Programming	Languages 9



Functions,	Anonymous	Functions,	
Higher	Order	Functions

• Anonymous	Functions	use	keyword	fn rather	than	

fun,	which	cannot	be	recursive

• Tail	Recursion

• You	are	not	doing	any	more	operation	after	getting	

returned	value	from	your	recursive	call

Winter	2018 CSE	341:	Programming	Languages 10



Functions,	Anonymous	Functions,	
Higher	Order	Functions
• Currying	is	taking	a	function	with	“several	arguments”	and	make	

it	into	nested	functions,	which	takes	one	argument	at	a	time

• Partial	evaluation:	since	curried	functions	are	just	nested	

functions,	we	can	pass	in	one	argument	at	a	time	in	order

• We	can	take	in	functions	as	arguments

• Higher	order	functions	are	just	those	functions	that	return	or	

take	in	functions

Winter	2018 CSE	341:	Programming	Languages 11



Functions,	Anonymous	Functions,	
Higher	Order	Functions

• Classic	higher	order	functions

• List.filter

• List.map

• List.foldl

• List.foldr

• What	do	they	do?

Winter	2018 CSE	341:	Programming	Languages 12



Lexical	Scope	vs	Dynamic	Scope

• Lexical	scope:	use	environment	where	function	is	

defined

• Our	Function	Closure	so	far	is	in	lexical	scope

• Dynamic	scope:	use	environment	where	function	is	

called

Winter	2018 CSE	341:	Programming	Languages 13



Type	Inference,	Polymorphic	
Types	and	Type	Generality
• Polymorphic	types	means	it	can	be	any	type

• So is	more	general	
than

• But	not	more	general	than	

• Polymorphic	type	can	be	any	type

• More	general	means	you	can	substitute	one	type	by	another	
consistently

Winter	2018 CSE	341:	Programming	Languages 14

‘a list * ‘a list -> ‘a list

int list * int list -> int list

int list * string list -> int list



Modules

• You	can	hide	a	function	by	using	signatures

Winter	2018 CSE	341:	Programming	Languages 15

structure MyModule = struct bindings end

signature SIGNAME = 
sig types-for-bindings end

structure MyModule :> SIGNAME = 
struct bindings end



Modules

• Remember	from	lecture	you	can	ensure	constraints	
on	values

Winter	2018 CSE	341:	Programming	Languages 16

structure Rational3 = 
struct
type rational = int * int
exception BadFrac

fun make_frac (x,y) = …
fun Whole i = (i,1) (* needed for RATIONAL_C *)
fun add ((a,b)(c,d)) = (a*d+b*c,b*d)
fun toString r = … (* reduce at last minute *)
end



Equivalence

• Given	equivalent	arguments,	two	equivalent	pieces	
of	code:
• Produce	equivalent	results
• Have	the	same	(non-)termination	behavior
• Mutate	(non-local)	memory	in	the	same	way
• Do	the	same	input/output
• Raise	the	same	exceptions

• Look	for	function	closures,	dynamic	and	static	
environments	and	side	effects	like	print

Winter	2018 CSE	341:	Programming	Languages 17



Good	Luck!

Winter	2018 CSE	341:	Programming	Languages 18


