W

CSE341: Programming Languages Section 3
Function Patterns Tail Recursion

Winter 2018

Function Patterns

- Just a syntactic sugar: a pattern matching of function arguments

```
fun f x = el
    case x of
        p1 => e1
    | p2 => e2
```

- Can be written as

```
fun f p1 = e1
    | f p2 = e2
    | f pn = en
```

- Nothing more powerful, it's a matter of taste

Another example of tail recursion

```
fun sum xs \(=\)
    case xs of
            [] \(=>0\)
            | \(\mathrm{x}:: \mathrm{xs}^{\prime}=>\mathbf{x}+\mathrm{sum} \mathrm{xs}^{\prime}\)
```

```
fun sum xs \(=\)
```

fun sum xs $=$
let fun aux (xs,acc) =
let fun aux (xs,acc) =
case xs of
case xs of
[] => acc
[] => acc
| x:: xs' => aux (xs', x+acc)
| x:: xs' => aux (xs', x+acc)
in
in
aux (xs,0)
aux (xs,0)
end

```
    end
```


And another

```
fun rev xs =
    case xs of
        [] => []
        | x::xs' => (rev xs') @ [x]
```

```
fun rev xs =
```

fun rev xs =
let fun aux (xs,acc) =
let fun aux (xs,acc) =
case xs of
case xs of
[] => acc
[] => acc
| x: : xs' => aux (xs' ,x::acc)
| x: : xs' => aux (xs' ,x::acc)
in
in
aux (xs, [])
aux (xs, [])
end

```
    end
```


Actually much better

```
fun rev xs =
    case xs of
    [] => []
    | x::xs' => (rev xs') @ [x]
```

- For fact and sum, tail-recursion is faster but both ways linear time
- Non-tail recursive rev is quadratic because each recursive call uses append, which must traverse the first list
- And $1+2+\ldots+($ length -1) is almost length*length/2
- Moral: beware list-append, especially within outer recursion
- Cons constant-time (and fast), so accumulator version much better

To show you regular recursions do fail

- OCaml code
- Why SML works?
- Hopefully we can talk about it in Section 8
- Otherwise, if we don't get a chance to talk about it and you are really curious, you should take 505

Always tail-recursive?

There are certainly cases where recursive functions cannot be evaluated in a constant amount of space

Most obvious examples are functions that process trees

In these cases, the natural recursive approach is the way to go

- You could get one recursive call to be a tail call, but rarely worth the complication

Also beware the wrath of premature optimization

- Favor clear, concise code
- But do use less space if inputs may be large

What is a tail-call?

The "nothing left for caller to do" intuition usually suffices

- If the result of \mathbf{f} is the "immediate result" for the enclosing function body, then $\mathbf{f} \mathbf{x}$ is a tail call

But we can define "tail position" recursively

- Then a "tail call" is a function call in "tail position"

Precise definition

A tail call is a function call in tail position

- If an expression is not in tail position, then no subexpressions are
- In fun f p = e, the body e is in tail position
- If if e1 then e2 else e3 is in tail position, then e2 and e3 are in tail position (but e1 is not). (Similar for case-expressions)
- If let b1 ... bn in e end is in tail position, then \mathbf{e} is in tail position (but no binding expressions are)
- Function-call arguments e1 e2 are not in tail position

A lot of tail recursion problems

- Problem 1: inc_all, increment all elements of the given list by 1
- inc_all([1, 2, 3, 5]) $=[2,3,4,6]$
- Problem 2: repeat, repeat(x, n) returns a list with n repeated values of x
$-\operatorname{repeat}(1,5)=[1,1,1,1,1]$
- Problem 3: range, range(lo, hi) returns a list of all values from lo to (hi-1)
$-\operatorname{range}(2,5)=[2,3,4]$

A lot of tail recursion problems

- Problem 4: pair_chain, (pair_chain I) returns a list of all pairs of consecutive elements in I in any order
- pair_chain([1, 2, 3, 5]) $=[(3,5),(2,3),(1,2)]$
- Problem 5: triples, triples(xs, ys, zs) combines three lists into a triple list if they have equal length, otherwise raise a LengthMismatch exception
$-\operatorname{triples}([1,4],[2,5],[3,6])=[(4,5,6),(1,2,3)]$
- triples([1, 4], [2, 5], [3]) should raise exception

A lot of tail recursion problems

- Problem 6: choose2, (choose2 I) returns a list of pairs using all combination of elements of I. The list can be in any order.
- Write for normal recursion first
- choose2_tail([1, 2, 3, 4, 5]) =

$$
[(4,5),(3,5),(3,4),(2,5),(2,4),(2,3),(1,5),(1,4),(1,3),(1,2)]
$$

