
CSE341: Programming Languages

Section 3
Function Patterns

Tail Recursion

Winter 2018

Function Patterns

• Just a syntactic sugar: a pattern matching of function arguments

• Can be written as

• Nothing more powerful, it’s a matter of taste

Winter 2018 2CSE341: Programming Languages

fun f x = e1
case x of
p1 => e1

| p2 => e2
…

fun f p1 = e1
| f p2 = e2
…
| f pn = en

Another example of tail recursion

Winter 2018 3CSE341: Programming Languages

fun sum xs =
case xs of

[] => 0
| x::xs’ => x + sum xs’

fun sum xs =
let fun aux(xs,acc) =

case xs of
[] => acc

| x::xs’ => aux(xs’,x+acc)
in

aux(xs,0)
end

And another

Winter 2018 4CSE341: Programming Languages

fun rev xs =
case xs of

[] => []
| x::xs’ => (rev xs’) @ [x]

fun rev xs =
let fun aux(xs,acc) =

case xs of
[] => acc

| x::xs’ => aux(xs’,x::acc)
in

aux(xs,[])
end

Actually much better

• For fact and sum, tail-recursion is faster but both ways linear time
• Non-tail recursive rev is quadratic because each recursive call

uses append, which must traverse the first list
– And 1+2+…+(length-1) is almost length*length/2
– Moral: beware list-append, especially within outer recursion

• Cons constant-time (and fast), so accumulator version much better

Winter 2018 5CSE341: Programming Languages

fun rev xs =
case xs of

[] => []
| x::xs’ => (rev xs’) @ [x]

To show you regular recursions do fail

• OCaml code

• Why SML works?

– Hopefully we can talk about it in Section 8

– Otherwise, if we don’t get a chance to talk about it and you

are really curious, you should take 505

Winter 2018 6CSE341: Programming Languages

Always tail-recursive?

There are certainly cases where recursive functions cannot be
evaluated in a constant amount of space

Most obvious examples are functions that process trees

In these cases, the natural recursive approach is the way to go
– You could get one recursive call to be a tail call, but rarely

worth the complication

Also beware the wrath of premature optimization
– Favor clear, concise code
– But do use less space if inputs may be large

Winter 2018 7CSE341: Programming Languages

What is a tail-call?

The “nothing left for caller to do” intuition usually suffices
– If the result of f x is the “immediate result” for the

enclosing function body, then f x is a tail call

But we can define “tail position” recursively
– Then a “tail call” is a function call in “tail position”

…

Winter 2018 8CSE341: Programming Languages

Precise definition

A tail call is a function call in tail position

• If an expression is not in tail position, then no subexpressions are

• In fun f p = e, the body e is in tail position
• If if e1 then e2 else e3 is in tail position, then e2 and e3

are in tail position (but e1 is not). (Similar for case-expressions)
• If let b1 … bn in e end is in tail position, then e is in tail

position (but no binding expressions are)
• Function-call arguments e1 e2 are not in tail position
• …

Winter 2018 9CSE341: Programming Languages

A lot of tail recursion problems

• Problem 1: inc_all, increment all elements of the given list by 1

– inc_all([1, 2, 3, 5]) = [2,3,4,6]

• Problem 2: repeat, repeat(x, n) returns a list with n repeated

values of x

– repeat(1, 5) = [1,1,1,1,1]

• Problem 3: range, range(lo, hi) returns a list of all values from lo

to (hi - 1)

– range(2, 5) = [2, 3, 4]

Winter 2018 10CSE341: Programming Languages

A lot of tail recursion problems

• Problem 4: pair_chain, (pair_chain l) returns a list of all pairs of

consecutive elements in l in any order

– pair_chain([1, 2, 3, 5]) = [(3,5),(2,3),(1,2)]

• Problem 5: triples, triples(xs, ys, zs) combines three lists into a

triple list if they have equal length, otherwise raise a

LengthMismatch exception

– triples([1, 4], [2, 5], [3, 6]) = [(4,5,6),(1,2,3)]

– triples([1, 4], [2, 5], [3]) should raise exception

Winter 2018 11CSE341: Programming Languages

A lot of tail recursion problems

• Problem 6: choose2, (choose2 l) returns a list of pairs using all

combination of elements of l. The list can be in any order.

– Write for normal recursion first

– choose2_tail([1, 2, 3, 4, 5]) =

[(4,5),(3,5),(3,4),(2,5),(2,4),(2,3),(1,5),(1,4),(1,3),(1,2)]

Winter 2018 12CSE341: Programming Languages

