Function Patterns

• Just a syntactic sugar: a pattern matching of function arguments

```
fun f x = e1
  case x of
    p1 => e1
  | p2 => e2
  ...
```

• Can be written as

```
fun f p1 = e1
  | f p2 = e2
  ...
  | f pn = en
```

• Nothing more powerful, it’s a matter of taste
Another example of tail recursion

```ml
fun sum xs = 
  case xs of 
    [] => 0 
  | x::xs' => x + sum xs'

fun sum xs = 
  let fun aux(xs,acc) = 
    case xs of 
      [] => acc 
    | x::xs' => aux(xs',x+acc)
    in 
      aux(xs,0)
    end
```
And another

fun rev xs =
 case xs of
 [] => []
 | x::xs' => (rev xs') @ [x]

fun rev xs =
 let fun aux(xs,acc) =
 case xs of
 [] => acc
 | x::xs' => aux(xs',x::acc)
 in
 aux(xs,[])
 end
Actually much better

```
fun rev xs = 
  case xs of
    [] => [] 
  | x::xs' => (rev xs') @ [x]
```

- For `fact` and `sum`, tail-recursion is faster but both ways linear time
- Non-tail recursive `rev` is quadratic because each recursive call uses append, which must traverse the first list
 - And 1+2+…+(length-1) is almost length*length/2
 - Moral: beware list-append, especially within outer recursion
- Cons constant-time (and fast), so accumulator version much better
To show you regular recursions do fail

- OCaml code
- Why SML works?
 - Hopefully we can talk about it in Section 8
 - Otherwise, if we don’t get a chance to talk about it and you are really curious, you should take 505
Always tail-recursive?

There are certainly cases where recursive functions cannot be evaluated in a constant amount of space.

Most obvious examples are functions that process trees.

In these cases, the natural recursive approach is the way to go.
- You could get one recursive call to be a tail call, but rarely worth the complication.

Also beware the wrath of premature optimization.
- Favor clear, concise code.
- But do use less space if inputs may be large.
What is a tail-call?

The “nothing left for caller to do” intuition usually suffices
 – If the result of $f \ x$ is the “immediate result” for the
 enclosing function body, then $f \ x$ is a tail call

But we can define “tail position” recursively
 – Then a “tail call” is a function call in “tail position”
Precise definition

A tail call is a function call in tail position

- If an expression is not in tail position, then no subexpressions are
- In fun f p = e, the body e is in tail position
- If if e1 then e2 else e3 is in tail position, then e2 and e3 are in tail position (but e1 is not). (Similar for case-expressions)
- If let b1 ... bn in e end is in tail position, then e is in tail position (but no binding expressions are)
- Function-call arguments e1 e2 are not in tail position
- ...

Winter 2018
CSE341: Programming Languages
A lot of tail recursion problems

• Problem 1: inc_all, increment all elements of the given list by 1
 – inc_all([1, 2, 3, 5]) = [2, 3, 4, 6]
• Problem 2: repeat, repeat(x, n) returns a list with n repeated values of x
 – repeat(1, 5) = [1, 1, 1, 1, 1]
• Problem 3: range, range(lo, hi) returns a list of all values from lo to (hi - 1)
 – range(2, 5) = [2, 3, 4]
A lot of tail recursion problems

• Problem 4: pair_chain, \((\text{pair}_\text{chain} \ l)\) returns a list of all pairs of consecutive elements in \(l\) in any order
 - \(\text{pair}_\text{chain}([1, 2, 3, 5]) = [(3,5),(2,3),(1,2)]\)

• Problem 5: triples, \(\text{triples}(xs, ys, zs)\) combines three lists into a triple list if they have equal length, otherwise raise a \text{LengthMismatch} exception
 - \(\text{triples}([1, 4], [2, 5], [3, 6]) = [(4,5,6),(1,2,3)]\)
 - \(\text{triples}([1, 4], [2, 5], [3])\) should raise exception
A lot of tail recursion problems

- Problem 6: choose2, (choose2 l) returns a list of pairs using all combination of elements of l. The list can be in any order.
 - Write for normal recursion first
 - choose2_tail([1, 2, 3, 4, 5]) = [(4,5),(3,5),(3,4),(2,5),(2,4),(2,3),(1,5),(1,4),(1,3),(1,2)]