
CSE341: Programming Languages

Section 1

Chandrakana Nandi (Chandra)
Winter 2018

Adapted from slides by Dan Grossman, Eric Mullen and Ryan Doenges

Introduction

• 3rd year graduate student in
• I write ocaml, which is quite similar to SML.

• PL tools for manufacturing processes

• Enjoy running! (http://raceconditionrunning.com)

Winter 2018 2CSE 341: Programming Languages

Course Resources

Winter 2018 3CSE 341: Programming Languages

• We have a ton of course resources. Please use them!

• If you get stuck or need help:

– Ask questions in Google Group

– Email the staff list! cse341-staff@cs.washington.edu

– Come to Office Hours (on website, you don’t need a list of

topics before you decide to stop by)

• We’re here for you

Agenda

• Setup: get everything running

• Emacs Basics

• ML development workflow

• Shadowing

• Comparison Operators

• Boolean Operators

• Debugging

• Testing

Winter 2018 4CSE 341: Programming Languages

Setup

• Excellent guide located on the course website:

https://courses.cs.washington.edu/courses/cse341/18wi/software-

setup/sml_emacs.pdf

• We’re going to spend about 5 minutes setting up now (so you can

follow along for the rest of section)

• You need 3 things installed:

– Emacs

– SML

– SML mode for Emacs

Winter 2018 5CSE 341: Programming Languages

Emacs Basics

• Don’t be scared!

• Commands have particular notation: C-x means hold Ctrl while
pressing x

• Meta key is Alt (thus M-z means hold Alt, press z)

– C-x C-s is Save File

– C-x C-f is Open File

– C-x C-c is Exit Emacs

• C-g is Escape (Abort any partial command you may have
entered)

• Consult the installation guide

Winter 2018 6CSE 341: Programming Languages

ML Development Workflow

• REPL is the general term for tools like “Run I/O” you have been

using in jGRASP for CSE 142/3

• REPL means Read Eval Print Loop

• Read: ask the user for semi colon terminated input

• Evaluate: try to run the input as ML code

• Print: show the user the result or any error messages produced

by evaluation

• Loop

Winter 2018 7CSE 341: Programming Languages

ML Development Workflow

• Demo of REPL with lecture 1 code

– You can type in any ML code you want, it will evaluate it

– Useful to put code in .sml file for reuse

– Every command must end in a semicolon (;)

– Load .sml files into REPL with use command

Winter 2018 8CSE 341: Programming Languages

Shadowing

• You can’t change a variable, but you can add another with the
same name

• When looking for a variable definition, most recent is always
used

• Shadowing is usually considered bad style

Winter 2018 9CSE 341: Programming Languages

val a = 1;
val b = 2;
val a = 3;

Shadowing

• This behavior, along with use in the REPL can lead to
confusing effects

• Suppose I have the following program:

• I load that into the REPL with use. Now, I decide to change my
program, and I delete a line, giving this:

• I load that into the REPL without restarting the REPL. What
goes wrong?

• (Hint: what is the value of y?)

Winter 2018 10CSE 341: Programming Languages

val x = 8;
val y = 2;

val x = 8;

Comparison Operators

• You can compare numbers in SML!

• Each of these operators has 2 subexpressions of type int, and

produces a bool

Winter 2018 11CSE 341: Programming Languages

= (Equality) < (Less than) <= (Less than or
equal)

<> (Inequality) > (Greater than) >= (Greater than
or equal)

Boolean Operators
• You can also perform logical operations over bools!

• and is completely different, we will talk about it later

• andalso/orelse are SML built-ins as they use short-circuit

evaluation, we will talk about why they have to be built-ins later

Winter 2018 12CSE 341: Programming Languages

Operation Syntax Type-Checking Evaluation

andalso e1 andalso e2 e1 and e2 have type bool Same as Java’s e1 && e2

orelse e1 orelse e2 e1 and e2 have type bool Same as Java’s e1 || e2

not not e1 e1 has type bool Same as Java’s !e1

And… Those Bad Styles

• Language does not need andalso , orelse , or not

• Using more concise forms generally much better style
• And definitely please do not do this:

Winter 2018 13CSE 341: Programming Languages

(* e1 andalso e2 *)
if e1
then e2
else false

(* e1 orelse e2 *)
if e1
then true
else e2

(* not e1 *)
if e1
then false
else true

(* just say e (!!!) *)
if e
then true
else false

Debugging

• DEMO

• Errors can occur at 3 stages:

– Syntax: Your program is not “valid SML” in some (usually

small and annoyingly nitpicky) way

– Type Check: One of the type checking rules didn’t work out

– Runtime: Your program did something while running that it

shouldn’t

• The best way to debug is to read what you wrote carefully, and

think about it.

Winter 2018 14CSE 341: Programming Languages

Testing

• We don’t have a unit testing framework (too heavyweight for 5

weeks)

• You should still test your code!

Winter 2018 15CSE 341: Programming Languages

val test1 = ((4 div 4) = 1);

(* Neat trick for creating hard-fail tests: *)

val true = ((4 div 4) = 1);

