
CSE341: Programming Languages

Lecture 22
OOP vs. Functional Decomposition;

Adding Operators & Variants;
Double-Dispatch

Zach Tatlock
Winter 2018

Breaking things down

• In functional (and procedural) programming, break programs
down into functions that perform some operation

• In object-oriented programming, break programs down into
classes that give behavior to some kind of data

This lecture:

– These two forms of decomposition are so exactly opposite
that they are two ways of looking at the same “matrix”

– Which form is “better” is somewhat personal taste, but also
depends on how you expect to change/extend software

– For some operations over two (multiple) arguments,
functions and pattern-matching are straightforward, but with
OOP we can do it with double dispatch (multiple dispatch)

Winter 2018 2CSE 341: Programming Languages

The expression example
Well-known and compelling example of a common pattern:

– Expressions for a small language
– Different variants of expressions: ints, additions, negations, …
– Different operations to perform: eval, toString, hasZero, …

Leads to a matrix (2D-grid) of variants and operations
– Implementation will involve deciding what “should happen” for

each entry in the grid regardless of the PL

Winter 2018 3CSE 341: Programming Languages

eval toString hasZero …

Int

Add

Negate

…

Standard approach in ML

• Define a datatype, with one constructor for each variant
– (No need to indicate datatypes if dynamically typed)

• “Fill out the grid” via one function per column
– Each function has one branch for each column entry
– Can combine cases (e.g., with wildcard patterns) if multiple

entries in column are the same

[See the ML code]

Winter 2018 4CSE 341: Programming Languages

eval toString hasZero …

Int

Add

Negate

…

Standard approach in OOP

• Define a class, with one abstract method for each operation
– (No need to indicate abstract methods if dynamically typed)

• Define a subclass for each variant
• So “fill out the grid” via one class per row with one method

implementation for each grid position
– Can use a method in the superclass if there is a default for

multiple entries in a column

[See the Ruby and Java code]
Winter 2018 5CSE 341: Programming Languages

eval toString hasZero …

Int

Add

Negate

…

A big course punchline

• FP and OOP often doing the same thing in exact opposite way
– Organize the program “by rows” or “by columns”

• Which is “most natural” may depend on what you are doing (e.g., an
interpreter vs. a GUI) or personal taste

• Code layout is important, but there is no perfect way since software
has many dimensions of structure
– Tools, IDEs can help with multiple “views” (e.g., rows / columns)

Winter 2018 6CSE 341: Programming Languages

eval toString hasZero …

Int

Add

Negate

…

Extensibility

• For implementing our grid so far, SML / Racket style usually by
column and Ruby / Java style usually by row

• But beyond just style, this decision affects what (unexpected?)
software extensions need not change old code

• Functions [see ML code]:
– Easy to add a new operation, e.g., noNegConstants
– Adding a new variant, e.g., Mult requires modifying old

functions, but ML type-checker gives a to-do list if original
code avoided wildcard patterns

Winter 2018 7CSE 341: Programming Languages

eval toString hasZero noNegConstants

Int

Add

Negate

Mult

• For implementing our grid so far, SML / Racket style usually by
column and Ruby / Java style usually by row

• But beyond just style, this decision affects what (unexpected?)
software extensions are easy and/or do not change old code

• Objects [see Ruby code]:
– Easy to add a new variant, e.g., Mult
– Adding a new operation, e.g., noNegConstants requires

modifying old classes, but Java type-checker gives a to-do
list if original code avoided default methods

Winter 2018 8CSE 341: Programming Languages

eval toString hasZero noNegConstants

Int

Add

Negate

Mult

Extensibility

The other way is possible

• Functions allow new operations and objects allow new variants
without modifying existing code even if they didn’t plan for it
– Natural result of the decomposition

Optional:
• Functions can support new variants somewhat awkwardly “if they

plan ahead”
– Not explained here: Can use type constructors to make

datatypes extensible and have operations take function
arguments to give results for the extensions

• Objects can support new operations somewhat awkwardly “if they
plan ahead”
– Not explained here: The popular Visitor Pattern uses the

double-dispatch pattern to allow new operations “on the side”
Winter 2018 9CSE 341: Programming Languages

Thoughts on Extensibility

• Making software extensible is valuable and hard
– If you know you want new operations, use FP
– If you know you want new variants, use OOP
– If both? Languages like Scala try; it’s a hard problem
– Reality: The future is often hard to predict!

• Extensibility is a double-edged sword
– Code more reusable without being changed later
– But makes original code more difficult to reason about locally

or change later (could break extensions)
– Often language mechanisms to make code less extensible

(ML modules hide datatypes; Java’s final prevents
subclassing/overriding)

Winter 2018 10CSE 341: Programming Languages

Binary operations

• Situation is more complicated if an operation is defined over
multiple arguments that can have different variants
– Can arise in original program or after extension

• Function decomposition deals with this much more simply…

Winter 2018 11CSE 341: Programming Languages

eval toString hasZero …

Int

Add

Negate

…

Example

To show the issue:
– Include variants String and Rational
– (Re)define Add to work on any pair of Int, String, Rational

• Concatenation if either argument a String, else math

Now just defining the addition operation is a different 2D grid:

Winter 2018 12CSE 341: Programming Languages

Int String Rational

Int

String

Rational

ML Approach
Addition is different for most Int, String, Rational combinations

– Run-time error for non-value expressions

Natural approach: pattern-match on the pair of values
– For commutative possibilities, can re-call with (v2,v1)

Winter 2018 13CSE 341: Programming Languages

fun add_values (v1,v2) =
case (v1,v2) of

(Int i, Int j) => Int (i+j)
| (Int i, String s) => String (Int.toString i ^ s)
| (Int i, Rational(j,k)) => Rational (i*k+j,k)
| (Rational _, Int _) => add_values (v2,v1)
| … (* 5 more cases (3*3 total): see the code *)

fun eval e =
case e of

…
| Add(e1,e2) => add_values (eval e1, eval e2)

Example

To show the issue:
– Include variants String and Rational
– (Re)define Add to work on any pair of Int, String, Rational

• Concatenation if either argument a String, else math

Now just defining the addition operation is a different 2D grid:

Worked just fine with functional decomposition — what about OOP…

Winter 2018 14CSE 341: Programming Languages

Int String Rational

Int

String

Rational

What about OOP?

Starts promising:
– Use OOP to call method add_values to one value with

other value as result

Winter 2018 15CSE 341: Programming Languages

class Add
…
def eval
e1.eval.add_values e2.eval

end
end

Classes Int, MyString, MyRational then all implement
– Each handling 3 of the 9 cases: “add self to argument”

class Int
…
def add_values v
… # what goes here?

end
end

First try

• This approach is common, but is “not as OOP”
– So do not do it on your homework

• A “hybrid” style where we used dynamic dispatch on 1 argument
and then switched to Racket-style type tests for other argument
– Definitely not “full OOP”

Winter 2018 16CSE 341: Programming Languages

class Int
def add_values v
if v.is_a? Int

Int.new(v.i + i)
elsif v.is_a? MyRational

MyRational.new(v.i+v.j*i,v.j)
else

MyString.new(v.s + i.to_s)
end

end

Another way…

• add_values method in Int needs “what kind of thing” v has
– Same problem in MyRational and MyString

• In OOP, “always” solve this by calling a method on v instead!

• But now we need to “tell” v “what kind of thing” self is
– We know that!
– “Tell” v by calling different methods on v, passing self

• Use a “programming trick” (?) called double-dispatch…

Winter 2018 17CSE 341: Programming Languages

Double-dispatch “trick”

• Int, MyString, and MyRational each define all of addInt,
addString, and addRational
– For example, String’s addInt is for concatenating an integer

argument to the string in self
– 9 total methods, one for each case of addition

• Add’s eval method calls e1.eval.add_values e2.eval,
which dispatches to add_values in Int, String, or Rational
– Int’s add_values: v.addInt self
– MyString’s add_values: v.addString self
– MyRational’s add_values: v.addRational self
So add_values performs “2nd dispatch” to the correct case of 9!

[Definitely see the code]

Winter 2018 18CSE 341: Programming Languages

Why showing you this

• Honestly, partly to belittle full commitment to OOP

• To understand dynamic dispatch via a sophisticated idiom

• Because required for the homework

• To contrast with multimethods (optional)

Winter 2018 19CSE 341: Programming Languages

Works in Java too

• In a statically typed language, double-dispatch works fine
– Just need all the dispatch methods in the type

[See Java code]

Winter 2018 20CSE 341: Programming Languages

abstract class Value extends Exp {
abstract Value add_values(Value other);
abstract Value addInt(Int other);
abstract Value addString(Strng other);
abstract Value addRational(Rational other);

}
class Int extends Value { … }
class Strng extends Value { … }
class Rational extends Value { … }

Being Fair

Belittling OOP style for requiring the manual trick of double
dispatch is somewhat unfair…

What would work better:
• Int, MyString, and MyRational each define three methods

all named add_values
– One add_values takes an Int, one a MyString, one a
MyRational

– So 9 total methods named add_values
– e1.eval.add_values e2.eval picks the right one of

the 9 at run-time using the classes of the two arguments
• Such a semantics is called multimethods or multiple dispatch

Winter 2018 21CSE 341: Programming Languages

Multimethods

General idea:
– Allow multiple methods with same name
– Indicate which ones take instances of which classes
– Use dynamic dispatch on arguments in addition to receiver

to pick which method is called

If dynamic dispatch is essence of OOP, this is more OOP
– No need for awkward manual multiple-dispatch

Downside: Interaction with subclassing can produce situations
where there is “no clear winner” for which method to call

Winter 2018 22CSE 341: Programming Languages

Ruby: Why not?

Multimethods a bad fit (?) for Ruby because:

• Ruby places no restrictions on what is passed to a method

• Ruby never allows methods with the same name
– Same name means overriding/replacing

Winter 2018 23CSE 341: Programming Languages

Java/C#/C++: Why not?

• Yes, Java/C#/C++ allow multiple methods with the same name

• No, these language do not have multimethods
– They have static overloading
– Uses static types of arguments to choose the method

• But of course run-time class of receiver [odd hybrid?]
– No help in our example, so still code up double-dispatch

manually

• Actually, C# 4.0 has a way to get effect of multimethods

• Many other language have multimethods (e.g., Clojure)
– They are not a new idea

Winter 2018 24CSE 341: Programming Languages

