CSE341: Programming Languages

Lecture 17
Implementing Languages Including Closures

Zach Tatlock
Winter 2018
Typical workflow

- **Concrete syntax (string):**

 "(fn x => x + x) 4"

- **Abstract syntax (tree):**

 Parsing

 Possible errors / warnings

 Type checking?

 Rest of implementation

 - Function
 - x
 - +
 - Var
 - x
 - Var
 - x
 - Constant
 - 4
Interpreter or compiler

So “rest of implementation” takes the abstract syntax tree (AST) and “runs the program” to produce a result

Fundamentally, two approaches to implement a PL B:

- **Write an interpreter** in another language A
 - Better names: evaluator, executor
 - Take a program in B and produce an answer (in B)

- **Write a compiler** in another language A to a third language C
 - Better name: translator
 - Translation must *preserve meaning* (equivalence)

We call A the **metalanguage**
 - Crucial to keep A and B straight
Reality more complicated

Evaluation (interpreter) and translation (compiler) are your options
 – But in modern practice have both and multiple layers

A plausible example:
 – Java compiler to bytecode intermediate language
 – Have an interpreter for bytecode (itself in binary), but compile frequent functions to binary at run-time
 – The chip is itself an interpreter for binary
 • Well, except these days the x86 has a translator in hardware to more primitive micro-operations it then executes

DrRacket uses a similar mix
Sermon

Interpreter versus compiler versus combinations is about a particular language **implementation**, not the language **definition**

So there is no such thing as a “compiled language” or an “interpreted language”
 - Programs cannot “see” how the implementation works

Unfortunately, you often hear such phrases
 - “C is faster because it’s compiled and LISP is interpreted”
 - This is nonsense; politely correct people

 - (Admittedly, languages with “eval” must “ship with some implementation of the language” in each program)
Typical workflow

concrete syntax (string)
"(fn x => x + x) 4"

abstract syntax (tree)

Parsing

Call

Function + Constant

Var + Var

Type checking?

Rest of implementation

Possible errors / warnings
Skipping parsing

• If implementing PL B in PL A, we can skip parsing
 – Have B programmers write ASTs directly in PL A
 – Not so bad with ML constructors or Racket structs
 – Embeds B programs as trees in A

```plaintext
; define B’s abstract syntax
(struct call ...)
(struct function ...)
(struct var ...)
...

; example B program
(call (function (list "x")
  (add (var "x")
    (var "x")))
  (const 4))
```
Already did an example!

- Let the metalanguage $A = \text{Racket}$
- Let the language-implemented $B = \text{"Arithmetic Language"}$
- Arithmetic programs written with calls to Racket constructors
- The interpreter is eval-exp

\begin{verbatim}
(struct const (int) #:transparent)
(struct negate (e) #:transparent)
(struct add (e1 e2) #:transparent)
(struct multiply (e1 e2) #:transparent)

(define (eval-exp e)
 (cond [(const? e) e]
 [(negate? e)
 (const (- (const-int
 (eval-exp (negate-e e)))))]
 [(add? e) ...]
 [(multiply? e) ...]...)
\end{verbatim}
What we know

• Define (abstract) syntax of language B with Racket structs
 – B called MUPL in homework
• Write B programs directly in Racket via constructors
• Implement interpreter for B as a (recursive) Racket function

Now, a subtle-but-important distinction:
 – Interpreter can assume input is a “legal AST for B”
 • Okay to give wrong answer or inscrutable error otherwise
 – Interpreter must check that recursive results are the right kind of value
 • Give a good error message otherwise
Legal ASTs

- “Trees the interpreter must handle” are a subset of all the trees Racket allows as a dynamically typed language

```r
(struct const (int) #:transparent)
(struct negate (e) #:transparent)
(struct add (e1 e2) #:transparent)
(struct multiply (e1 e2) #:transparent)
```

- Can assume “right types” for struct fields
 - `const` holds a number
 - `negate` holds a legal AST
 - `add` and `multiply` hold 2 legal ASTs

- Illegal ASTs can “crash the interpreter” – *this is fine*

```r
(multiply (add (const 3) "uh-oh") (const 4))
(negate -7)
```
Interpreter results

• Our interpreters return expressions, but not any expressions
 – Result should always be a value, a kind of expression that evaluates to itself
 – If not, the interpreter has a bug

• So far, only values are from \texttt{const}, e.g., (\texttt{const 17})

• But a larger language has more values than just numbers
 – Booleans, strings, etc.
 – Pairs of values (definition of value recursive)
 – Closures
 – ...
Example

See code for language that adds booleans, number-comparison, and conditionals:

```plaintext
(struct bool (b) #:transparent)
(struct eq-num (e1 e2) #:transparent)
(struct if-then-else (e1 e2 e3) #:transparent)
```

What if the program is a legal AST, but evaluation of it tries to use the wrong kind of value?

- For example, “add a boolean”
- You should detect this and give an error message not in terms of the interpreter implementation
- Means checking a recursive result whenever a particular kind of value is needed
 - No need to check if any kind of value is okay
Dealing with variables

- Interpreters so far have been for languages without variables
 - No let-expressions, functions-with-arguments, etc.
 - Language in homework has all these things

- This segment describes in English what to do
 - Up to you to translate this to code

- Fortunately, what you have to implement is what we have been stressing since the very, very beginning of the course
Dealing with variables

• An environment is a mapping from variables (Racket strings) to values (as defined by the language)
 – Only ever put pairs of strings and values in the environment

• Evaluation takes place in an environment
 – Environment passed as argument to interpreter helper function
 – A variable expression looks up the variable in the environment
 – Most subexpressions use same environment as outer expression
 – A let-expression evaluates its body in a larger environment
The Set-up

So now a recursive helper function has all the interesting stuff:

```
(define (eval-under-env e env)
  (cond ...
    ; case for each kind of
    ))
  ; expression
```

- Recursive calls must “pass down” correct environment

Then `eval-exp` just calls `eval-under-env` with same expression and the empty environment

On homework, environments themselves are just Racket lists containing Racket pairs of a string (the MUPL variable name, e.g., "x") and a MUPL value (e.g., `(int 17)`)
A grading detail

- Stylistically `eval-under-env` would be a helper function one could define locally inside `eval-exp`.

- But do not do this on your homework. We have grading tests that call `eval-under-env` directly, so we need it at top-level.
The best part

• The most interesting and mind-bending part of the homework is that the language being implemented has first-class closures
 – With lexical scope of course

• Fortunately, what you have to implement is what we have been stressing since we first learned about closures...
Higher-order functions

The “magic”: How do we use the “right environment” for lexical scope when functions may return other functions, store them in data structures, etc.?

Lack of magic: The interpreter uses a closure data structure (with two parts) to keep the environment it will need to use later

\[
\text{struct closure (env fun) #:transparent}
\]

Evaluate a function expression:

- A function is \textit{not} a value; a closure \textit{is} a value
 - Evaluating a function returns a closure
 - Create a closure out of (a) the function and (b) the current environment when the function was evaluated

Evaluate a function call:

- …
Function calls

- Use current environment to evaluate \texttt{e1} to a closure
 - Error if result is a value that is not a closure
- Use current environment to evaluate \texttt{e2} to a value
- Evaluate closure’s function’s body \texttt{in the closure’s environment}, extended to:
 - Map the function’s argument-name to the argument-value
 - And for recursion, map the function’s name to the whole closure

This is the same semantics we learned a few weeks ago “coded up”

Given a closure, the code part is \textit{only} ever evaluated using the environment part (extended), \textit{not} the environment at the call-site
Is that expensive?

• *Time* to build a closure is tiny: a struct with two fields

• *Space* to store closures *might* be large if environment is large
 – But environments are immutable, so natural and correct to have lots of sharing, e.g., of list tails (cf. lecture 3)
 – Still, end up keeping around bindings that are not needed

• Alternative used in practice: When creating a closure, store a possibly-smaller environment holding only the variables that are free variables in the function body
 – Free variables: Variables that occur, not counting shadowed uses of the same variable name
 – A function body would never need anything else from the environment
Free variables examples

(\lambda () (+ x y z)) ; \{x, y, z\}

(\lambda (x) (+ x y z)) ; \{y, z\}

(\lambda (x) (if x y z)) ; \{y, z\}

(\lambda (x) (let ([y 0]) (+ x y z))) ; \{z\}

(\lambda (x y z) (+ x y z)) ; \{\}

(\lambda (x) (+ y (let ([y z]) (+ y y)))) ; \{y, z\}
Computing free variables

- So does the interpreter have to analyze the code body every time it creates a closure?

- No: Before evaluation begins, compute free variables of every function in program and store this information with the function

- Compared to naïve store-entire-environment approach, building a closure now takes more time but less space
 - And time proportional to number of free variables
 - And various optimizations are possible

- [Also use a much better data structure for looking up variables than a list]
Optional: compiling higher-order functions

• If we are compiling to a language without closures (like assembly), cannot rely on there being a “current environment”

• So compile functions by having the translation produce “regular” functions that all take an extra explicit argument called “environment”

• And compiler replaces all uses of free variables with code that looks up the variable using the environment argument
 – Can make these fast operations with some tricks

• Running program still creates closures and every function call passes the closure’s environment to the closure’s code
Recall…

Our approach to language implementation:

• Implementing language B in language A
• Skipping parsing by writing language B programs directly in terms of language A constructors
• An interpreter written in A recursively evaluates

What we know about macros:

• Extend the syntax of a language
• Use of a macro expands into language syntax before the program is run, i.e., before calling the main interpreter function
Put it together

With our set-up, we can use language A (i.e., Racket) *functions* that produce language B abstract syntax as language B “macros”

- Language B programs can use the “macros” as though they are part of language B
- No change to the interpreter or struct definitions
- Just a programming idiom enabled by our set-up
 - Helps teach what macros are
- See code for example “macro” definitions and “macro” uses
 - “macro expansion” happens before calling `eval-exp`
Hygiene issues

• Earlier we had material on hygiene issues with macros
 – (Among other things), problems with shadowing variables when using local variables to avoid evaluating expressions more than once

• The “macro” approach described here does not deal well with this