CSE341: Programming Languages

Lecture 6
Nested Patterns
Exceptions
Tail Recursion

Zach Tatlock
Winter 2018
Nested patterns

• We can nest patterns as deep as we want
 – Just like we can nest expressions as deep as we want
 – Often avoids hard-to-read, wordy nested case expressions

• So the full meaning of pattern-matching is to compare a pattern against a value for the “same shape” and bind variables to the “right parts”
 – More precise recursive definition coming after examples
Useful example: zip/unzip 3 lists

fun zip3 lists =
case lists of
 ([],[],[]) => []
 | (hd1::tl1,hd2::tl2,hd3::tl3) =>
 (hd1,hd2,hd3)::zip3(tl1,tl2,tl3)
 | _ => raise ListLengthMismatch

fun unzip3 triples =
case triples of
 [] => ([],[],[])
 | (a,b,c)::tl =>
 let val (l1, l2, l3) = unzip3 tl
 in
 (a::l1,b::l2,c::l3)
 end

More examples in .sml files
Style

- Nested patterns can lead to very elegant, concise code
 - Avoid nested case expressions if nested patterns are simpler and avoid unnecessary branches or let-expressions
 - Example: `unzip3` and `nondecreasing`
 - A common idiom is matching against a tuple of datatypes to compare them
 - Examples: `zip3` and `multsign`

- Wildcards are good style: use them instead of variables when you do not need the data
 - Examples: `len` and `multsign`
(Most of) the full definition

The semantics for pattern-matching takes a pattern p and a value v and decides (1) does it match and (2) if so, what variable bindings are introduced.

Since patterns can nest, the definition is elegantly recursive, with a separate rule for each kind of pattern. Some of the rules:

- If p is a variable x, the match succeeds and x is bound to v
- If p is $_____________$, the match succeeds and no bindings are introduced
- If p is (p_1, \ldots, p_n) and v is (v_1, \ldots, v_n), the match succeeds if and only if p_1 matches v_1, …, p_n matches v_n. The bindings are the union of all bindings from the submatches
- If p is $C\ p_1$, the match succeeds if v is $C\ v_1$ (i.e., the same constructor) and p_1 matches v_1. The bindings are the bindings from the submatch.
- … (there are several other similar forms of patterns)
Examples

- Pattern `a::b::c::d` matches all lists with ≥ 3 elements
- Pattern `a::b::c::[]` matches all lists with 3 elements
- Pattern `((a,b),(c,d))::e` matches all non-empty lists of pairs of pairs
Exceptions

An exception binding introduces a new kind of exception

```plaintext
exception MyUndesirableCondition
exception MyOtherException of int * int
```

The `raise` primitive raises (a.k.a. throws) an exception

```plaintext
raise MyUndesirableException
raise (MyOtherException (7,9))
```

A handle expression can handle (a.k.a. catch) an exception

– If doesn’t match, exception continues to propagate

```plaintext
e1 handle MyUndesirableException => e2
e1 handle MyOtherException(x,y) => e2
```
Actually…

Exceptions are a lot like datatype constructors…

- Declaring an exception adds a constructor for type `exn`

- Can pass values of `exn` anywhere (e.g., function arguments)
 - Not too common to do this but can be useful

- `handle` can have multiple branches with patterns for type `exn`
Recursion

Should now be comfortable with recursion:

• No harder than using a loop (whatever that is 😊)

• Often much easier than a loop
 – When processing a tree (e.g., evaluate an arithmetic expression)
 – Examples like appending lists
 – Avoids mutation even for local variables

• Now:
 – How to reason about efficiency of recursion
 – The importance of *tail recursion*
 – Using an *accumulator* to achieve tail recursion
 – [No new language features here]
Call-stacks

While a program runs, there is a call stack of function calls that have started but not yet returned
 – Calling a function \mathbf{f} pushes an instance of \mathbf{f} on the stack
 – When a call to \mathbf{f} finishes, it is popped from the stack

These stack-frames store information like the value of local variables and “what is left to do” in the function

Due to recursion, multiple stack-frames may be calls to the same function
fun fact n = if n=0 then 1 else n*fact(n-1)
val x = fact 3

fact 3

fact 3: 3*

fact 2

fact 2: 2*

fact 1

fact 1: 1*

fact 0

fact 3: 3*

fact 3: 3*

fact 3: 3*

fact 3: 3*2

fact 2: 2*

fact 2: 2*

fact 2: 2*1

fact 1: 1*

fact 1: 1*1

fact 0: 1
Example Revised

```
fun fact n =
  let fun aux(n,acc) =
    if n=0
    then acc
    else aux(n-1,acc*n)
  in
    aux(n,1)
  end

val x = fact 3
```

Still recursive, more complicated, but the result of recursive calls is the result for the caller (no remaining multiplication)
The call-stacks

\[
\begin{align*}
\text{fact 3} & \quad \text{fact 3: __} & \quad \text{fact 3: __} & \quad \text{fact 3: __} \\
\text{aux (3,1)} & \quad \text{aux (3,1): __} & \quad \text{aux (3,1): __} & \quad \text{aux (3,1): __} \\
\text{aux (2,3)} & \quad \text{aux (2,3): __} & \quad \text{aux (2,3): __} & \quad \text{aux (2,3): __} \\
\text{aux (1,6)} & \quad \text{aux (1,6): __} & \quad \text{aux (1,6): __} & \quad \text{aux (1,6): __} \\
\text{aux (0,6)} & \quad \text{aux (0,6): __} & \quad \text{aux (0,6): __} & \quad \text{aux (0,6): __} \\
\end{align*}
\]

Etc…
An optimization

It is unnecessary to keep around a stack-frame just so it can get a callee’s result and return it without any further evaluation.

ML recognizes these *tail calls* in the compiler and treats them differently:

- Pop the caller *before* the call, allowing callee to *reuse* the same stack space
- (Along with other optimizations,) as efficient as a loop

Reasonable to assume all functional-language implementations do tail-call optimization
What really happens

fun fact n =
 let fun aux(n,acc) =
 if n=0
 then acc
 else aux(n-1,acc*n)
 in
 aux(n,1)
 end
val x = fact 3
Moral of tail recursion

• Where reasonably elegant, feasible, and important, rewriting functions to be *tail-recursive* can be much more efficient
 – Tail-recursive: recursive calls are tail-calls

• There is a methodology that can often guide this transformation:
 – Create a helper function that takes an *accumulator*
 – Old base case becomes initial accumulator
 – New base case becomes final accumulator
Methodology already seen

fun fact n =
 let fun aux(n,acc) =
 if n=0 then acc else aux(n-1,acc*n)
 in
 aux(n,1)
 end

val x = fact 3

fact 3 aux(3,1) aux(2,3) aux(1,6) aux(0,6)
Another example

fun sum xs =
 case xs of
 [] => 0
 | x::xs' => x + sum xs'

fun sum xs =
 let fun aux(xs,acc) =
 case xs of
 [] => acc
 | x::xs' => aux(xs',x+acc)
 in
 aux(xs,0)
 end
And another

fun rev xs =
 case xs of
 [] => []
 | x::xs' => (rev xs') @ [x]

fun rev xs =
 let fun aux(xs,acc) =
 case xs of
 [] => acc
 | x::xs' => aux(xs',x::acc)
 in
 aux(xs,[])
 end
Actually much better

fun rev xs =
 case xs of
 [] => []
 | x::xs' => (rev xs') @ [x]

- For \texttt{fact} and \texttt{sum}, tail-recursion is faster but both ways linear time
- Non-tail recursive \texttt{rev} is quadratic because each recursive call uses append, which must traverse the first list
 - And $1+2+\ldots+(\text{length}-1)$ is almost $\text{length*length}/2$
 - Moral: beware list-append, especially within outer recursion
- Cons constant-time (and fast), so accumulator version much better
Always tail-recursive?

There are certainly cases where recursive functions cannot be evaluated in a constant amount of space.

Most obvious examples are functions that process trees.

In these cases, the natural recursive approach is the way to go:
 – You could get one recursive call to be a tail call, but rarely worth the complication.

Also beware the wrath of premature optimization:
 – Favor clear, concise code.
 – But do use less space if inputs may be large.
What is a tail-call?

The “nothing left for caller to do” intuition usually suffices

- If the result of \(f \ x \) is the “immediate result” for the enclosing function body, then \(f \ x \) is a tail call

But we can define “tail position” recursively

- Then a “tail call” is a function call in “tail position”
Precise definition

A tail call is a function call in tail position

- If an expression is not in tail position, then no subexpressions are
- In `fun f p = e`, the body `e` is in tail position
- If `if e1 then e2 else e3` is in tail position, then `e2` and `e3` are in tail position (but `e1` is not). (Similar for case-expressions)
- If `let b1 ... bn in e end` is in tail position, then `e` is in tail position (but no binding expressions are)
- Function-call arguments `e1 e2` are not in tail position
- ...

Winter 2018 CSE 341: Programming Languages