Function definitions

Functions: the most important building block in the whole course
 – Like Java methods, have arguments and result
 – But no classes, this, return, etc.

Example function binding:

(* Note: correct only if y>=0 *)

fun pow (x : int, y : int) =
 if y=0
 then 1
 else x * pow(x,y-1)

Note: The body includes a (recursive) function call: pow(x,y-1)
Example, extended

```ocaml
fun pow (x : int, y : int) = 
  if y=0 
  then 1 
  else x * pow(x,y-1) 

fun cube (x : int) = 
  pow (x,3) 

val sixtyfour = cube 4 

val fortytwo = pow(2,2+2) + pow(4,2) + cube(2) + 2
```
Some gotchas

Three common “gotchas”

• Bad error messages if you mess up function-argument syntax

• The use of * in type syntax is not multiplication
 – Example: \texttt{int * int \rightarrow int}
 – In expressions, * is multiplication: \texttt{x * pow(x,y-1)}

• Cannot refer to later function bindings
 – That’s simply ML’s rule
 – Helper functions must come before their uses
 – Need special construct for \textit{mutual recursion} (later)
Recursion

• If you’re not yet comfortable with recursion, you will be soon 😊
 – Will use for most functions taking or returning lists

• “Makes sense” because calls to same function solve “simpler” problems

• Recursion more powerful than loops
 – We won’t use a single loop in ML
 – Loops often (not always) obscure simple, elegant solutions
Function bindings: 3 questions

• Syntax: \[\text{fun } x_0 (x_1 : t_1, \ldots, x_n : t_n) = e \]
 – (Will generalize in later lecture)

• Evaluation: A function is a value! (No evaluation yet)
 – Adds \(x_0 \) to environment so later expressions can call it
 – (Function-call semantics will also allow recursion)

• Type-checking:
 – Adds binding \(x_0 : (t_1 * \ldots * t_n) \rightarrow t \) if:
 – Can type-check body \(e \) to have type \(t \) in the static environment containing:
 • “Enclosing” static environment (earlier bindings)
 • \(x_1 : t_1, \ldots, x_n : t_n \) (arguments with their types)
 • \(x_0 : (t_1 * \ldots * t_n) \rightarrow t \) (for recursion)
More on type-checking

```haskell
fun x0 (x1 : t1, ... , xn : tn) = e
```

- New kind of type: \((t_1 \times ... \times t_n) \rightarrow t\)
 - Result type on right
 - The overall type-checking result is to give \(x_0\) this type in rest of program (unlike Java, not for earlier bindings)
 - Arguments can be used only in \(e\) (unsurprising)

- Because evaluation of a call to \(x_0\) will return result of evaluating \(e\), the return type of \(x_0\) is the type of \(e\)

- The type-checker “magically” figures out \(t\) if such a \(t\) exists
 - Later lecture: Requires some cleverness due to recursion
 - More magic after hw1: Later can omit argument types too
Function Calls

A new kind of expression: 3 questions

Syntax: \(e_0 \ (e_1, \ldots, e_n)\)
 - (Will generalize later)
 - Parentheses optional if there is exactly one argument

Type-checking:
 If:
 - \(e_0\) has some type \((t_1 \times \ldots \times t_n) \rightarrow t\)
 - \(e_1\) has type \(t_1\), \ldots, \(e_n\) has type \(t_n\)
 Then:
 - \(e_0 (e_1, \ldots, e_n)\) has type \(t\)

Example: \(\text{pow}(x, y-1)\) in previous example has type \text{int}
Function-calls continued

\[e_0(e_1, \ldots, e_n) \]

Evaluation:

1. (Under current dynamic environment,) evaluate \(e_0 \) to a function
 \[\text{fun } x_0 \ (x_1 : t_1, \ldots, x_n : t_n) = e \]
 - Since call type-checked, result *will be* a function

2. (Under current dynamic environment,) evaluate arguments to values \(v_1, \ldots, v_n \)

3. Result is evaluation of \(e \) in an environment extended to map
 \(x_1 \) to \(v_1, \ldots, x_n \) to \(v_n \)
 - (“An environment” is actually the environment where the function was defined, and includes \(x_0 \) for recursion)
Tuples and lists

So far: numbers, booleans, conditionals, variables, functions
- Now ways to build up data with multiple parts
- This is essential
- Java examples: classes with fields, arrays

Now:
- *Tuples*: fixed “number of pieces” that may have different types

Then:
- *Lists*: any “number of pieces” that all have the same type

Later:
- Other more general ways to create compound data
Pairs (2-tuples)

Need a way to build pairs and a way to access the pieces

Build:

• Syntax: \((e_1, e_2)\)

• Evaluation: Evaluate \(e_1\) to \(v_1\) and \(e_2\) to \(v_2\); result is \((v_1, v_2)\)
 – A pair of values is a value

• Type-checking: If \(e_1\) has type \(t_a\) and \(e_2\) has type \(t_b\), then the pair expression has type \(t_a * t_b\)
 – A new kind of type
Pairs (2-tuples)

Need a way to *build* pairs and a way to *access* the pieces

Access:

- **Syntax:** \(\#1 \, e \) and \(\#2 \, e \)

- **Evaluation:** Evaluate \(e \) to a pair of values and return first or second piece
 - Example: If \(e \) is a variable \(x \), then look up \(x \) in environment

- **Type-checking:** If \(e \) has type \(ta \ * \ tb \), then \(\#1 \, e \) has type \(ta \) and \(\#2 \, e \) has type \(tb \)
Examples

Functions can take and return pairs

```
fun swap (pr : int*bool) =
  (#2 pr, #1 pr)

fun sum_two_pairs (pr1 : int*int, pr2 : int*int) =
  (#1 pr1) + (#2 pr1) + (#1 pr2) + (#2 pr2)

fun div_mod (x : int, y : int) =
  (x div y, x mod y)

fun sort_pair (pr : int*int) =
  if (#1 pr) < (#2 pr)
  then pr
  else (#2 pr, #1 pr)
```
Tuples

Actually, you can have tuples with more than two parts
 - A new feature: a generalization of pairs

• (e1,e2,…,en)
• ta * tb * … * tn
• #1 e, #2 e, #3 e, …

Homework 1 uses triples of type int*int*int a lot
Nesting

Pairs and tuples can be nested however you want
- Not a new feature: implied by the syntax and semantics

```plaintext
val x1 = (7,(true,9)) (* int * (bool*int) *)
val x2 = #1 (#2 x1)   (* bool *)
val x3 = (#2 x1)      (* bool*int *)
val x4 = ((3,5),((4,8),(0,0)))
               (* (int*int)*((int*int)*(int*int)) *)
```
Lists

• Despite nested tuples, the type of a variable still “commits” to a particular “amount” of data

In contrast, a list:
 – Can have any number of elements
 – But all list elements have the same type

Need ways to build lists and access the pieces…
Building Lists

• The empty list is a value:

 []

• In general, a list of values is a value; elements separated by commas:

 [v1,v2,...,vn]

• If e1 evaluates to v and e2 evaluates to a list [v1,...,vn], then e1::e2 evaluates to [v,v1,...,vn]

 e1::e2 (* pronounced "cons" *)
Accessing Lists

Until we learn pattern-matching, we will use three standard-library functions

- `null e` evaluates to `true` if and only if `e` evaluates to `[]`

- If `e` evaluates to `[v1,v2,…,vn]` then `hd e` evaluates to `v1`
 - (raise exception if `e` evaluates to `[]`)

- If `e` evaluates to `[v1,v2,…,vn]` then `tl e` evaluates to `[v2,…,vn]`
 - (raise exception if `e` evaluates to `[]`)
 - Notice result is a list
Type-checking list operations

Lots of new types: For any type \(t \), the type \(t \text{ list} \) describes lists where all elements have type \(t \)

- Examples: \(\text{int list} \), \(\text{bool list} \), \(\text{int list list} \), \(\text{(int * int) list} \), \(\text{(int list * int) list} \)

- So \([]\) can have type \(t \text{ list} \) for any type \(t \)
 - SML uses type \('a \text{ list} \) to indicate this ("tick a" or "alpha")

- For \(e_1 :: e_2 \) to type-check, we need a \(t \) such that \(e_1 \) has type \(t \) and \(e_2 \) has type \(t \text{ list} \). Then the result type is \(t \text{ list} \)

- \(\text{null} : 'a \text{ list} \rightarrow \text{bool} \)
- \(\text{hd} : 'a \text{ list} \rightarrow 'a \)
- \(\text{tl} : 'a \text{ list} \rightarrow 'a \text{ list} \)
Example list functions

fun sum_list (xs : int list) =
 if null xs
 then 0
 else hd(xs) + sum_list(tl(xs))

fun countdown (x : int) =
 if x=0
 then []
 else x :: countdown (x-1)

fun append (xs : int list, ys : int list) =
 if null xs
 then ys
 else hd(xs) :: append (tl(xs), ys)
Recursion again

Functions over lists are usually recursive
 – Only way to “get to all the elements”
• What should the answer be for the empty list?
• What should the answer be for a non-empty list?
 – Typically in terms of the answer for the tail of the list!

Similarly, functions that produce lists of potentially any size will be recursive
 – You create a list out of smaller lists
Lists of pairs

Processing lists of pairs requires no new features. Examples:

```haskell
fun sum_pair_list (xs : (int*int) list) = 
  if null xs 
  then 0
  else #1(hd xs) + #2(hd xs) + sum_pair_list(tl xs)

fun firsts (xs : (int*int) list) = 
  if null xs 
  then []
  else #1(hd xs) :: firsts(tl xs)

fun seconds (xs : (int*int) list) = 
  if null xs 
  then []
  else #2(hd xs) :: seconds(tl xs)

fun sum_pair_list2 (xs : (int*int) list) = 
  (sum_list(firsts xs)) + (sum_list(seconds xs))
```