Function definitions

Functions: the most important building block in the whole course
- Like Java methods, have arguments and result
- But no classes, `this`, `return`, etc.

Example function binding:

```plaintext
(* Note: correct only if y>=0 *)
fun pow (x : int, y : int) = 
  if y=0 then 1 
  else x * pow(x,y-1)
```

Note: The body includes a (recursive) function call: `pow(x,y-1)`

Example, extended

```plaintext
fun pow (x : int, y : int) = 
  if y=0 
  then 1 
  else x * pow(x,y-1)

fun cube (x : int) = 
  pow (x,3)

val sixtyfour = cube 4
val fortytwo = pow(2,2+2) + pow(4,2) + cube(2) + 2
```

Some gotchas

Three common "gotchas"
- Bad error messages if you mess up function-argument syntax
- The use of `*` in type syntax is not multiplication
 - Example: `int * int -> int`
 - In expressions, `*` is multiplication: `x * pow(x,y-1)`
- Cannot refer to later function bindings
 - That’s simply ML’s rule
 - Helper functions must come before their uses
 - Need special construct for mutual recursion (later)
Recursion

• If you’re not yet comfortable with recursion, you will be soon 😊
 – Will use for most functions taking or returning lists

• “Makes sense” because calls to same function solve “simpler” problems

• Recursion more powerful than loops
 – We won’t use a single loop in ML
 – Loops often (not always) obscure simple, elegant solutions

Function bindings: 3 questions

• Syntax: \(\text{fun } x_0 (x_1 : t_1, \ldots, x_n : t_n) = e \)
 – (Will generalize in later lecture)

• Evaluation: A function is a value! (No evaluation yet)
 – Adds \(x_0 \) to environment so later expressions can call it
 – (Function-call semantics will also allow recursion)

• Type-checking:
 – Adds binding \(x_0 : (t_1 * \ldots * t_n) \rightarrow t \) if:
 – Can type-check body \(e \) to have type \(t \) in the static environment containing:
 • “Enclosing” static environment (earlier bindings)
 • \(x_1 : t_1, \ldots, x_n : t_n \) (arguments with their types)
 • \(x_0 : (t_1 * \ldots * t_n) \rightarrow t \) (for recursion)

More on type-checking

• New kind of type: \((t_1 * \ldots * t_n) \rightarrow t \)
 – Result type on right
 – The overall type-checking result is to give \(x_0 \) this type in rest of program (unlike Java, not for earlier bindings)
 – Arguments can be used only in \(e \) (unsurprising)

• Because evaluation of a call to \(x_0 \) will return result of evaluating \(e \), the return type of \(x_0 \) is the type of \(e \)

• The type-checker “magically” figures out \(t \) if such a \(t \) exists
 – Later lecture: Requires some cleverness due to recursion
 – More magic after hw1: Later can omit argument types too

Function Calls

A new kind of expression: 3 questions

Syntax: \(e_0 (e_1, \ldots, e_n) \)
 – (Will generalize later)
 – Parentheses optional if there is exactly one argument

Type-checking:
 If:
 – \(e_0 \) has some type \((t_1 * \ldots * t_n) \rightarrow t \)
 – \(e_1 \) has type \(t_1 \), ..., \(e_n \) has type \(t_n \)
Then:
 – \(e_0 (e_1, \ldots, e_n) \) has type \(t \)
Example: \(\text{pow}(x, y-1) \) in previous example has type \(\text{int} \)
Function-calls continued

\[e_0(e_1, \ldots, e_n) \]

Evaluation:

1. (Under current dynamic environment,) evaluate \(e_0 \) to a function \(\text{fun } x_0 \ (x_1: t_1, \ldots, x_n: t_n) = e \)
 - Since call type-checked, result will be a function

2. (Under current dynamic environment,) evaluate arguments to values \(v_1, \ldots, v_n \)

3. Result is evaluation of \(e \) in an environment extended to map \(x_1 \) to \(v_1, \ldots, x_n \) to \(v_n \)
 - ("An environment" is actually the environment where the function was defined, and includes \(x_0 \) for recursion)

Pairs (2-tuples)

Need a way to \textit{build} pairs and a way to \textit{access} the pieces

\textit{Build}:

- Syntax: \((e_1, e_2)\)
- Evaluation: Evaluate \(e_1 \) to \(v_1 \) and \(e_2 \) to \(v_2 \); result is \((v_1, v_2)\)
 - A pair of values is a value
- Type-checking: If \(e_1 \) has type \(t_a \) and \(e_2 \) has type \(t_b \), then the pair expression has type \(t_a * t_b \)
 - A new kind of type

Tuples and lists

So far: numbers, booleans, conditionals, variables, functions
- Now ways to build up data with multiple parts
- This is essential
- Java examples: classes with fields, arrays

Now:
- \textit{Tuples}: fixed "number of pieces" that may have different types

Then:
- \textit{Lists}: any "number of pieces" that all have the same type

Later:
- Other more general ways to create compound data

Pairs (2-tuples)

Need a way to \textit{build} pairs and a way to \textit{access} the pieces

\textit{Access}:

- Syntax: \#1 \(e \) and \#2 \(e \)
- Evaluation: Evaluate \(e \) to a pair of values and return first or second piece
 - Example: If \(e \) is a variable \(x \), then look up \(x \) in environment
- Type-checking: If \(e \) has type \(t_a * t_b \), then \#1 \(e \) has type \(t_a \) and \#2 \(e \) has type \(t_b \)
Examples

Functions can take and return pairs

```
fun swap (pr:int*bool) = (#2 pr, #1 pr)
fun sum_two_pairs (pr1:int*int, pr2:int*int) = (#1 pr1) + (#2 pr1) + (#1 pr2) + (#2 pr2)
fun div_mod (x:int, y:int) = (x div y, x mod y)
fun sort_pair (pr:int*int) =
  if (#1 pr) < (#2 pr) then pr
  else (#2 pr, #1 pr)
```

Tuples

Actually, you can have tuples with more than two parts

- A new feature: a generalization of pairs

```
• (e1,e2,…,en)
• ta * tb * … * tn
• #1 e, #2 e, #3 e, ...
```

Homework 1 uses triples of type int*int*int a lot

Nesting

Pairs and tuples can be nested however you want

- Not a new feature: implied by the syntax and semantics

```
val x1 = (7,(true,9)) (* int * (bool*int) *)
val x2 = #1 (#2 x1) (* bool *)
val x3 = (#2 x1) (* bool*int *)
val x4 = (((3,5),((4,8),(0,0)))) (* (int*int)*((int*int)*int*int)) *
```

Lists

- Despite nested tuples, the type of a variable still "commits" to a particular "amount" of data

In contrast, a list:

- Can have any number of elements
- But all list elements have the same type

Need ways to build lists and access the pieces...
Building Lists

• The empty list is a value:

 `[]`

• In general, a list of values is a value; elements separated by commas:

 `[v1,v2,...,vn]`

• If `e1` evaluates to `v` and `e2` evaluates to a list `[v1,...,vn]`, then `e1::e2` evaluates to `[v,v1,...,vn]`

 `e1::e2 (* pronounced "cons" *)`

Accessing Lists

Until we learn pattern-matching, we will use three standard-library functions

• `null e` evaluates to `true` if and only if `e` evaluates to `[]`

• If `e` evaluates to `[v1,v2,...,vn]` then `hd e` evaluates to `v1`
 – (raise exception if `e` evaluates to `[]`)

• If `e` evaluates to `[v1,v2,...,vn]` then `tl e` evaluates to `[v2,...,vn]`
 – (raise exception if `e` evaluates to `[]`)
 – Notice result is a list

Type-checking list operations

Lots of new types: For any type `t`, the type `t list` describes lists where all elements have type `t`

– Examples: `int list` `bool list` `int list list` (int * int) list (int list * int) list

• So `[]` can have type `t list` for any type `t`
 – SML uses type `'a list` to indicate this (“tick a” or “alpha”)

• For `e1::e2` to type-check, we need a `t` such that `e1` has type `t` and `e2` has type `t list`. Then the result type is `t list`

 `null : 'a list -> bool`

 `hd : 'a list -> 'a`

 `tl : 'a list -> 'a list`

Example list functions

```plaintext
fun sum_list (xs : int list) =  
  if null xs  
  then 0  
  else hd(xs) + sum_list(tl(xs))

fun countdown (x : int) =  
  if x=0  
  then []  
  else x :: countdown (x-1)

fun append (xs : int list, ys : int list) =  
  if null xs  
  then ys  
  else hd (xs) :: append (tl(xs), ys)
```
Recursion again

Functions over lists are usually recursive
- Only way to "get to all the elements"
 - What should the answer be for the empty list?
 - What should the answer be for a non-empty list?
- Typically in terms of the answer for the tail of the list!

Similarly, functions that produce lists of potentially any size will be recursive
- You create a list out of smaller lists

Lists of pairs

Processing lists of pairs requires no new features. Examples:

```plaintext
fun sum_pair_list (xs : (int*int) list) = 
  if null xs
    then 0
  else #1(hd xs) + #2(hd xs) + sum_pair_list(tl xs)

fun firsts (xs : (int*int) list) = 
  if null xs
    then []
  else #1(hd xs) :: firsts(tl xs)

fun seconds (xs : (int*int) list) = 
  if null xs
    then []
  else #2(hd xs) :: seconds(tl xs)

fun sum_pair_list2 (xs : (int*int) list) = 
  (sum_list(firsts xs)) + (sum_list(seconds xs))
```