
1. What are the types of the following x1, x2, … x5? Some might have type errors: 
b = True 
 
x1 :: IO () 
x1 = if b then putStrLn "ho" else return () 
 
-- Type Error 
x2 = if b then putStrLn "squid"  else return "octopus" 
 
x3 :: [Char] 
x3 = if b then "squid" else "octopus" 
 
-- Type error 
x4 = if b then "squid" else return () 
 
x5 :: IO Bool 
x5 = do 
     putStr "testing" 
     x <- readLn 
     return (not x) 
 
2. Give a recursive definition of a list  doubles  whose first element is 10, and whose n th 
element is twice the n− 1 st, i.e., [10, 20, 40, 80, 160, 320, ....]. To do this, write a helper 
function doubles_from that takes a parameter n and returns a list of all the doubles 
starting at n. 
 
doubles :: [Integer] 
doubles = doubles_from 10 
doubles_from :: Integer -> [Integer] 
doubles_from n = n : doubles_from (2*n) 
 
-- other version of doubles 
doubles2 :: [Integer] 
doubles2 = 10 : map (*2) doubles 
 
 
 
 
 
 
 
 



3. Give yet another non-recursive definition of  doubles  using the built-in function 
iterate  from the Haskell prelude. This is defined as follows:  
 
iterate :: (a -> a) -> a -> [a]  
iterate f x = x : iterate f (f x) 
 
doubles3 :: [Integer] 
doubles3 = iterate (*2) 10 
 
 
 
4. Define a Haskell list  dollars  that is the infinite list of amounts of money you have 
every year, assuming you start with $100 and get paid 5% interest, compounded yearly. 
(Ignore inflation, deflation, taxes, bailouts, the possibility of total economic collapse, and 
other such details.) So dollars should be equal to [100.0, 105.0, 110.25, ...] 
 
-- simple but not general version: 
dollars :: [Double] 
dollars = 100 : map (\d -> 1.05*d) dollars 
 
-- or using iterate: 
idollars = iterate (1.05*) 100 
 
-- more general recursive version: 
better_dollars :: [Double] 
better_dollars = dollar_growth 100.0 0.05 
 
dollar_growth :: Double -> Double -> [Double] 
dollar_growth p rate = p : dollar_growth (p*(1+rate)) rate 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



5. Desugar the following actions: 
 
lion_desugar = 
  putStrLn "What is the color of your mane?" 
  >> getLine 
  >>= \x -> putStrLn $ "Rawr, nice " ++ x ++ " mane" 
 
 
parity_repl_desugar = 
  putStrLn "Enter a number" 
  >> readLn 
  >>= \n -> case odd n of 
              True -> putStrLn $ (show n) ++ " is odd" 
              False -> putStrLn $ (show n) ++ " is even" 
  >> parity_repl_desugar 
 
map_reduce_desugar = 
  putStrLn "Enter a unary mapping operation" 
  >> getLine 
  >>= \op -> putStrLn "Enter a unary reducing operation" 
             >> getLine 
             >>= \reduce -> putStrLn "Enter a list to evaluate" 
                            >> getLine 
                            >>= \lst -> let expr = "foldr1 (" ++ 
reduce ++ ") $ map (" ++ op ++ ") " ++ lst 
                                        in evaluate expr 
   
  
 
 
Key Takeaways from Octopus discussion: 
You can pattern match in a number of ways, so long as it’s a valid pattern match. 

If a function is passed in [OctoInt 5, OctoList [OctoInt 6]], I can pattern match on this with 
(x : xs), [x, y], [x, OctoList y], (x : y : ys), (x : (OctoList y) : ys), and more! 
 
One way to help reveal what the functions you’re given take in is to define the following (using 
octocons as an example): 
octocons args = error (“args is “ ++ show args) 
 
In other words, just throw an error! You can start from here and make the way you’re pattern 
matching more precise as you move forward. 


