
Section 4: April 19, 2018

fold, types, and list comprehension

Q1: ​(Q2 from mini-exercises 2)

Write a function ​concat' ​that concatenates a list of lists. Use ​foldr​. (There is a function ​concat
in the Prelude that does this, hence the different name.)

Q2: Types

a) Write a Haskell type ​Point ​that represents a point in 2D space with 2 doubles (x and y)

b) Write a Haskell function ​distanceBetween ​to calculate the distance between two points.

c) Write a Haskell function ​shiftPoints ​that shifts a list of points by a given point (use

map​)

d) Write a Haskell function ​totalPath ​that returns the total distance between adjacent

pairs in a given list of ​Points​.

We should be able to create the following points and call the our two functions on them as

shown below:

x = Point 3 4
y = Point 5 12
z = Point 6 8
d = distanceBetween x y
shifted = shiftPoints [x,y] z
d’ = totalPath [x,y,z]

Q3: Types

Suppose that we have the following definition of the member function in Haskell:

member x [] = False
member x (y:ys)

| x==y = True
| otherwise = member x ys

What is the type of ==? (Try ​:t (==)​)

Circle each type declaration that is a correct type for member. (Not necessarily the most general

type, just a correct one.)
A. member :: a -> [a] -> Bool
B. member :: Bool -> Bool -> Bool
C. member :: [Integer] -> [Integer] -> Bool
D. member :: (Eq a) => [a] -> [[a]] -> Bool
E. member :: (Ord a) => a -> [a] -> Bool
F. member :: (Eq a) => a -> [a] -> Bool
G. member :: [Char]-> [[Char]] -> Bool

Which of the above types, if any, is the most general type for member?

Q4: List comprehension

Write the haskell code to bind the following lists to the variables x and y (respectively)

(Challenge: Try to think of multiple ways of doing each binding)

a) Bind the following list to the variable x: ​ [2,4,6,8,10,12,14,16,18,20,22,24,26,28,30]

b) Bind the following list to the variable y:

[-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17,18,-19,20]

Q5: #tbt Tail Recursion and foldr

Write a tail recursive haskell method to compute the average of a list of numbers (the average of

an empty list can be 0).

Now write the same method, but use a helper called ​sumCount​ that uses ​foldr​ to return an

Integer pair (with the first number being the sum of the list, and the second being the count).

