
CSE 341 — Racket Discussion Questions Part 3
These questions deal with macros, delayed evaluation, improper lists, and functions with a variable number of argu-
ments.

1. The lecture notes for macros include a definition for my-or that works just like the built-in or in Racket.

(define-syntax my-or
(syntax-rules ()

((my-or) #f)
((my-or e1 e2 ...)
(let ([temp e1])

(if temp
temp
(my-or e2 ...))))))

Given this definition, if we expand (my-or (= x 2)) we get

(let ([temp (= x 2)]) (if temp temp (my-or)))

This would further expand to

(let ([temp (= x 2)]) (if temp temp #f))

Modify the rule so it just expands (my-or (= x 2)) to (= x 2) instead. It should still work correctly for
(my-or).

2. Suppose we are writing our own version of the if special form, called my-if. This can’t be a normal function
in Racket, since we evaluate the arguments. We can write it as a macro, of course. For this mini-exercise, write
it as a function that uses delay to delay evaluating some or all of the arguments. Only delay arguments if need
be.

Now rewrite the following expression using your my-if function. (All you need to do is insert the appropriate
delays. Use Racket’s built-in delay macro.)

(if (= 1 1) (+ 2 4) (/ 10 0))

3. Draw a box-and-arrow picture for the value of '(squid . (clam . (octopus . ())))

4. Draw a box-and-arrow picture for the value of '(squid . (clam . octopus))

5. How would you write the following list structure in Scheme?

_______________ ________________
				/		
o	----	----->	o	/		
___	___	_______		____	___	/______

| |
| |
| |

___|___________ ____|___________
1	2		3	4
_______	_______		________	_______

1

6. Write a function my-max that finds the maximum of its arguments. It needs at least one argument, and can take
arbitrarily more. For example

(my-max 4 10 2 1)

should return 10.

You can use a helper function if you need to. Bonus points though for a version without a helper function!

What do these evaluate to?

(my-max 3)
(my-max)

2

