CSE 341 — Racket Discussion Questions Part 2

The first two questions are additional practice questions on recursion. After that, these questions deal with structs,
representing objects, lexical scoping, and macros.

1.

10.

11.

Define a recursive function £11yp that takes a list of booleans and returns a list with not applied to each value.
For example, (f1ip ' (#t #t #£f)) shouldreturn (#f #f #t).

Define another version of £11ip using map.

Define a function map2 that takes a 2-argument function and two lists. It should return a list of the
results of applying the function to corresponding pairs of elements from the two lists. For example,
(map2 + '"(1 2 3) '"(10 11 12)) shouldevaluateto (11 13 15).

How did you decide to handle the case of lists of different length? Justify your answer.

What does this expression evaluate to? Why? (What environment is (£ 3) evaluated in? What environment is
the body of the lambda evaluated in?)

(let ([x 21])
(let ([f (lambda (n) (+ x n))])
(let ([x 171])
(f 3))))

What does this expression evaluate to? Why?

(define (addN n)
(lambda (m) (+ m n)))

(letx ([m 10]
[n 20]

[addit (addN 3)1)
(addit 100))

What is the result of evaluating this expression? Why?

(let ([f (lambda () (/ 1 0))]
[x (+ 3 4)])
(+ x x))

Define a st ruct called point 3d that represents 3D points. Create a point p at the origin; change its z value
to be 10; and print it out. It should print as (point3d 0 0 10).

Define a make—-cell function that returns a simulated instance of a cell with a single field value,
which should be hidden (using lexical scoping). The cell should provide “methods” for get-value and
set-value!. Follow the bank account example in doing this. The value should start out as null.

Similarly but with more bells and whistles . ..define a make-point function that returns a simulated instance
of point with x and y fields, which should be hidden (using lexical scoping). The point should provide “methods”
for get-x, get-y, set-x!, set-y!, and print-point. Follow the bank account example in doing this.
The fields should start out as 0.

Define a Racket macro and?2 that is a 2-argument version of and. Hint: the value of the and expression in
Racket is the value of the last subexpression if all of them are something other than # £. The and2 macro should
work the same, so (and2 #t "squid") should evaluate to "squid".

Define a Racket macro grump that takes one argument and always returns "no". The argument should not be
evaluated.



