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Topics

e Delaying evaluation: Function bodies evaluated only at application

e Key idioms of delaying evaluation
— Conditionals
— Streams
— Laziness

— Memoization

e In general, evaluation rules defined by language semantics

— Some languages have “lazy” function application as the
standard mode for passing parameters (e.g. Haskell)
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Delayed Evaluation

For each language construct, there are rules governing when
subexpressions get evaluated. In many languages (including Racket,
Ruby, Python, and Java):

e function arguments are “eager” (call-by-value)
e conditional branches are not

In call-by-name semantics, the function arguments aren’t evaluated
before the function call, but instead at each use of argument in body.

e Sometimes faster: (lambda (x) 3)
e Sometimes slower: (lambda (x) (4 x x))

e Equivalent if function argument has no effects/non-termination
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Thunks

A “thunk” is just a function taking no arguments, which works great
for delaying evaluation.

e Instead of passing a value directly, pass a thunk (function) which
yields the value when it is called

If thunks are lightweight enough syntactically, why not make “if” be

an ordinary function in a language with call-by-value semantics?
(Smalltalk does this ... )
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Streams

e A stream is an “infinite” list — you can ask for the rest of it as

many times as you like and you'll never get null.

e The universe is finite, so a stream must really be an object that
acts like an infinite list.

e [he idea: use a function to describe what comes next.

Note: Connection to UNIX pipes
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Best of both worlds?

The “lazy” (call-by-need) rule: Evaluate the argument the first time
it's used. Save answer for subsequent uses.

e Asymptotically it's the best
e But behind-the-scenes bookkeeping can be costly

e And it's hard to reason about with effects

— Typically used in (sub)languages without side effects — we will
encounter it in Haskell

e Nonetheless, a key idiom with syntactic support in Racket

— And related to memoization
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Memoization

A “cache” of previous results is equivalent if results cannot change.
e Could be slower: cache too big or computation too cheap

e Could be faster: just a lookup

CSE 341 Spring 2018, Racket



