CSE 341:
Programming Languages

Spring 2018
Racket — Delayed Evaluation, Memoization, Thunks, Streams

CSE 341 Spring 2018, Racket



Topics

e Delaying evaluation: Function bodies evaluated only at application

e Key idioms of delaying evaluation
— Conditionals
— Streams
— Laziness

— Memoization

e In general, evaluation rules defined by language semantics

— Some languages have “lazy” function application as the
standard mode for passing parameters (e.g. Haskell)

CSE 341 Spring 2018, Racket



Delayed Evaluation

For each language construct, there are rules governing when
subexpressions get evaluated. In many languages (including Racket,
Ruby, Python, and Java):

e function arguments are “eager” (call-by-value)
e conditional branches are not

In call-by-name semantics, the function arguments aren’t evaluated
before the function call, but instead at each use of argument in body.

e Sometimes faster: (lambda (x) 3)
e Sometimes slower: (lambda (x) (4 x x))

e Equivalent if function argument has no effects/non-termination

CSE 341 Spring 2018, Racket



Thunks

A “thunk” is just a function taking no arguments, which works great
for delaying evaluation.

e Instead of passing a value directly, pass a thunk (function) which
yields the value when it is called

If thunks are lightweight enough syntactically, why not make “if” be

an ordinary function in a language with call-by-value semantics?
(Smalltalk does this ... )

CSE 341 Spring 2018, Racket



Streams

e A stream is an “infinite” list — you can ask for the rest of it as

many times as you like and you'll never get null.

e The universe is finite, so a stream must really be an object that
acts like an infinite list.

e [he idea: use a function to describe what comes next.

Note: Connection to UNIX pipes

CSE 341 Spring 2018, Racket



Best of both worlds?

The “lazy” (call-by-need) rule: Evaluate the argument the first time
it's used. Save answer for subsequent uses.

e Asymptotically it's the best
e But behind-the-scenes bookkeeping can be costly

e And it's hard to reason about with effects

— Typically used in (sub)languages without side effects — we will
encounter it in Haskell

e Nonetheless, a key idiom with syntactic support in Racket

— And related to memoization

CSE 341 Spring 2018, Racket



Memoization

A “cache” of previous results is equivalent if results cannot change.
e Could be slower: cache too big or computation too cheap

e Could be faster: just a lookup

CSE 341 Spring 2018, Racket



