
CSE 341 — Haskell Mini-Exercises # 2
These are questions for discussion in class. (You don’t need to hand in anything.) The solutions are on the class web
page.

1. Write a pointfree function rev_square that takes a list of integers and returns their squares, in reverse order.

2. Write a function concat' that concatenates a list of lists. Use foldr. (There is a function concat in the
Prelude that does this, hence the different name.)

3. Suppose that we have the following definition of the member function in Haskell:

member x [] = False
member x (y:ys) | x==y = True

| otherwise = member x ys

Circle each type declaration that is a correct type for member. (Not necessarily the most general type, just a
correct one.)

member :: Integer -> Integer -> Bool

member :: (Ord a) => a -> [a] -> Bool

member :: (Integer -> Integer) -> [Integer -> Integer] -> Bool

member :: (Eq a) => a -> [a] -> Bool

member :: a -> [a] -> Bool

member :: (Eq a) => [a] -> [[a]] -> Bool

member :: Bool -> [Bool] -> Bool

Which of the above types, if any, is the most general type for member?

4. The TypesNotes.hs lecture notes include a preorder function that does a pre-order traversal on the newly
defined Tree datatype. Define inorder and postorder functions as well.

5. Write a Haskell type List that is like built-in lists, but defined from scratch.

6. Write a Haskell function append that works on instances of the List type. What is the type of this function?

7. Write a Haskell function mymap, like the built in map but that works on instances of the List type. What is
the type of this function?

1



8. Write a Haskell action capitalize that reads in a line of text and prints it out in all capitals. (Hint: use the
function Data.Char.toUpper.)

9. Write a Haskell action santa that takes a parameter n, and prints out ho that many times. What is the type of
santa?

10. Convert the following actions into equivalent ones that don’t use do:

printsqrt2 = do
putStr "the square root of 2 is "
putStrLn (show (sqrt 2))

calcsqrt = do
x <- readLn
putStrLn "calculating the square root of x"
putStrLn (show (sqrt x))

2


