
CSE 341 - Programming Languages
Final exam - Spring 2018

Your Name:

Your UW NetID:

12 questions, 104 points total

You can bring a maximum of 2 single sided pages (or one double-sided page) of notes to the final. No laptops,
tablets, or smart phones. The notes can be either your own notes, or printouts of materials from the class website. If
you need extra space for an answer, use the blank page at the end. If you write part of your answer on the blank page
at the end, put a note saying that on the question.

1. (8 points) Write a Racket function multicons that takes an item x, a non-negative integer n, and a list xs;
and returns a new list with n occurrences of x followed by xs. You don’t need to handle bad inputs. Examples:

(multicons 'z 3 '(a b c)) => (z z z a b c)
(multicons '(a b) 3 '(x y z)) => ((a b) (a b) (a b) x y z)
(multicons 'z 0 '(a b c)) => (a b c)

1

2. (10 points) Suppose we have the following class in Ruby:

class Toy

def initialize(size, type)
@size = size
@type = type

end
The goodness method returns a number indicating how good
the toy is. The default is that bigger is better!
def goodness

size
end

end

(a) Add code to Toy to define public getters for size and type (but not setters), and to mix in the
Comparablemodule. Write your extra code in the blank spaces in the Toy definition above. To compare
two toys, compare their goodness. You should define in Toy the method needed by Comparable; this
should then automatically let you compare two toys t1 and t2 using t1>t2, t1<t2, t1==t2, and so
on, without needing to define <, >, and so on in Toy. Hint: 3<=>10 evaluates to -1.

(b) Write a subclass of Toy called StuffedAnimal.

• StuffedAnimal has the same fields as Toy plus numHugsGiven.
• numHugsGiven should be 0 on initialization.
• The new initialize method for StuffedAnimal should still take 2 arguments: size and
type. For full credit, when possible reuse relevant methods inherited from Toy.

• Redefine goodness for StuffedAnimal to be the product of its size and the number of hugs
given.

• Add a public method hug that increments numHugsGiven by 1 when called.
• Add a public getter for numHugsGiven.

2

3. (10 points) Write a Haskell function indices that takes a item and a list of that same type of item, and returns
a list of the positions of that item in the list. You can use a helper function if needed. Also give the most general
type of the indices function. Examples:

indices 'b' "ababb" => [1,3,4]
indices true [false,false,true] => [2]
indices 'x' "abc" => []

3

4. (6 points) What is the output from the following Ruby program? Write the output on the numbered lines. Hint:
puts for a hash prints like this: {"x"=>100}.

def test1(a,b)
a["x"] = "squid"
b["x"] = "clam"

end
def test2(a,b)

a["x"] = "tuna"
b = {"x"=>"starfish"}

end

a = Hash.new
test1(a,a)
puts a
test2(a,a)
puts a

b = Hash.new
c = Hash.new
test1(b,c)
puts b
puts c
test2(b,c)
puts b
puts c

1. ______________________________

2. ______________________________

3. ______________________________

4. ______________________________

5. ______________________________

6. ______________________________

5. (6 points) Suppose that Ruby passed parameters by reference. What would the output be in that case for the
program in Question 4?

1. ______________________________

2. ______________________________

3. ______________________________

4. ______________________________

5. ______________________________

6. ______________________________

4

6. (10 points) Write a Prolog rule index_of(X,Xs,N) that finds the element at a given position in a list. You
can assume that N is an integer in the goal. However, either X or Xs or both could be variables. Use is for
arithmetic. Examples:

index_of(X,[a,b,c,d],2) should succeed with X=c

index_of(X,[a,b,c,d],10) should fail

index_of(X,[],0) should fail

7. (6 points) Using your rule from Question 6, what are all the answers returned for the following goals? If there
are infinitely many, give the first three. Write false if the derivation fails. If your answer involves variables
generated by Prolog, make up names like this: _42 (the exact number you use in the name doesn’t matter).

(a) index_of(b,[a,b,c,d],3)

(b) index_of(a,Xs,0)

(c) index_of(a,Xs,2)

5

8. (10 points) Rewrite your Prolog rule from Question 6 to use constraints on integers, using the clpfd library. Hint:
to remind you of the syntax for constraints in clpfd, here are examples of constraints on K: K#>5, K#=J+4,
K#>=0.

9. (6 points) Using your improved rule from Question 8, what are all the answers returned for the following goals?
If there are infinitely many, give the first three. Write false if the derivation fails. If your answer involves
variables generated by Prolog, make up names like this: _42 (the exact number you use in the name doesn’t
matter).

(a) index_of(b,[a,b,c,d,a,b,c,d],N)

(b) index_of(X,[a,b,c],N)

(c) index_of(a,Xs,N)

6

10. (10 points) Here are some groups of statements about Java types. Circle all statements that are correct as far as
the Java compiler is concerned. In addition, write an E on the line next to each statement if that statement is
correct as far as the Java compiler is concerned, but that could result in a runtime exception due to a type error.

For example, suppose that one group of statements is
Rectangle2D is a subtype of RectangularShape ______
RectangularShape is a subtype of Rectangle2D ______
Neither is a subtype of the other

You would circle “Rectangle2D is a subtype of RectangularShape” because that statement is correct
as far as the Java compiler is concerned. You would not write an E next to it, since this could never result in a
runtime exception due to a type error. You would not circle the other two statements.

Hint: note that any type T is a subtype of itself.

(a) Integer is a subtype of Object ______

Object is a subtype of Integer ______

Neither is a subtype of the other

(b) Integer[] is a subtype of Object[] ______

Object[] is a subtype of Integer[] ______

Neither is a subtype of the other

(c) LinkedList<Integer> is a subtype of LinkedList<Object> ______

LinkedList<Object> is a subtype of LinkedList<Integer> ______

Neither is a subtype of the other

(d) LinkedList<?> is a subtype of LinkedList<? extends RectangularShape> ______

LinkedList<? extends RectangularShape> is a subtype of LinkedList<?> ______

Neither is a subtype of the other

(e) LinkedList<?> is a subtype of LinkedList<? extends Object> ______

LinkedList<? extends Object> is a subtype of LinkedList<?> ______

Neither is a subtype of the other

7

11. (10 points) True or false? Write T or F on the line in front of the question.

(a) _____ Racket’s eq? function could be added to OCTOPUS as a new primitive function.

(b) _____ Adding support for floating-point numbers to OCTOPUS would require changes to the lexer
and/or parser, in addition to changes to the interpreter.

(c) _____ The class Class in Ruby is a subclass of itself.

(d) _____ The class Class in Ruby is an instance of itself.

(e) _____ Any two Haskell lists can be tested for equality, since the list type is in the Eq type class.

(f) _____ Any let* expression in Racket can be rewritten as a set of nested let expressions.

(g) _____ Adding a cut to a Prolog program may change the number of answers that are returned, but
will never result in different answers.

(h) _____ Java methods can be contravariant in the return type.

(i) _____ Java methods can be overloaded based on the declared types of the method arguments.

(j) _____ In Ruby, a singleton class has only one superclass, but other classes may have multiple
superclasses.

12. (12 points) Consider the following Ruby class definitions.

class Book
attr_reader :author, :title
def initialize(author, title)

@author = author
@title = title

end
def description

title + " by " + author + "."
end

end

class Textbook < Book
attr_reader :subject
def initialize(author, title, subject)

super(author,title)
@subject = subject

end
def description

return super + " A textbook about " + subject + "."
end

end

class AnonymouslyWrittenBook < Book
def initialize(title)

@title = title
end
def author

"anonymous"
end

end

8

Suppose we make three objects b, t, and a by evaluating these statements:

b = Book.new("J.K. Rowling", "Harry Potter and the Deathly Hallows")
t = Textbook.new("James Stewart", "Calculus", "mathematics")
a = AnonymouslyWrittenBook.new("Haskell Good")

Then what is the result of evaluating each of these expressions? Hint: the instance_variables method
returns an array of instance variable names, like this: [:@x, :@y].

b.description

t.description

a.description

b.instance_variables

t.instance_variables

a.instance_variables

9

