
CSE 341: Section 1
Tam Dang

University of Washington

September 27, 2018

Outline

Introduction

Course Resources

Setup

ML Concepts

Introduction

Hello! I’m Tam.

• BS/MS Student

• Took CSE 341 in Spring 2016 with Dan (it was my first CSE 300!)

• I like music, I do NLP research, I am currently learning French

Course Resources

We have lots of course resources!

Email all of us at once with cse341-staff@cs.washington.edu

Comprehensive Reading Notes (notes for unit 1)

• Great for review + filling in gaps in your understanding

Come to our office hours!

We’re here for you :)

https://courses.cs.washington.edu/courses/cse341/18au/unit1notes.pdf

Installation
Setup

Extensive guide on how to install Emacs for each OS:
https://courses.cs.washington.edu/courses/cse341/18au/sml emacs.pdf

We need three things:

• Emacs: The IDE this course supports

• SML: The standard ML language

• SML-mode in Emacs: A package for Emacs that makes writing
ML code easier

https://courses.cs.washington.edu/courses/cse341/18au/sml_emacs.pdf

Emacs Commands
Setup

C is CTRL

M (meta) is ALT (option key for Macs)

(ex. C-s means hold down CTRL and press s)

• Open a file: C-x C-f

• Save a file: C-x C-s

• Escape out of the current command: C-g

Emacs Commands
Setup

C is CTRL

M (meta) is ALT (option key for Macs)

(ex. C-s means hold down CTRL and press s)

• Open a file: C-x C-f

• Save a file: C-x C-s

• Escape out of the current command: C-g

ML workflow in Emacs
Setup

REPL (Read-Eval-Print-Loop)

• Great for running snippets of code

• Evaluates all of your commands

• Each command has to end in a semi-colon

• Load val bindings from any .sml file with use

Starting an SML REPL in Emacs

• If you are editing a .sml file: C-c C-s + Enter while inside the
SML buffer

• If you AREN’T editing a .sml file: Do M-x, type ‘sml-mode’ and
then hit enter

You’ll want to restart the REPL between loading files with use

• Loading a file multiple times / loading multiple files in the same
REPL session can cause weird behavior (why?)

ML workflow in Emacs
Setup

REPL (Read-Eval-Print-Loop)

• Great for running snippets of code

• Evaluates all of your commands

• Each command has to end in a semi-colon

• Load val bindings from any .sml file with use

Starting an SML REPL in Emacs

• If you are editing a .sml file: C-c C-s + Enter while inside the
SML buffer

• If you AREN’T editing a .sml file: Do M-x, type ‘sml-mode’ and
then hit enter

You’ll want to restart the REPL between loading files with use

• Loading a file multiple times / loading multiple files in the same
REPL session can cause weird behavior (why?)

ML workflow in Emacs
Setup

REPL (Read-Eval-Print-Loop)

• Great for running snippets of code

• Evaluates all of your commands

• Each command has to end in a semi-colon

• Load val bindings from any .sml file with use

Starting an SML REPL in Emacs

• If you are editing a .sml file: C-c C-s + Enter while inside the
SML buffer

• If you AREN’T editing a .sml file: Do M-x, type ‘sml-mode’ and
then hit enter

You’ll want to restart the REPL between loading files with use

• Loading a file multiple times / loading multiple files in the same
REPL session can cause weird behavior (why?)

Shadowing
ML Concepts

val bindings are immutable

• You can’t change a variable, but you can add another with the same
name

val x = 2 (* x -> int *);

val y = 3 (* y -> int *);

val x = 1 (* x -> int *);

The most recent binding is always used (so x is 1)

Shadowing is considered bad style and should be avoided

Shadowing
ML Concepts

val bindings are immutable

• You can’t change a variable, but you can add another with the same
name

val x = 2 (* x -> int *);

val y = 3 (* y -> int *);

val x = 1 (* x -> int *);

The most recent binding is always used (so x is 1)

Shadowing is considered bad style and should be avoided

Shadowing
ML Concepts

val bindings are immutable

• You can’t change a variable, but you can add another with the same
name

val x = 2 (* x -> int *);

val y = 3 (* y -> int *);

val x = 1 (* x -> int *);

The most recent binding is always used (so x is 1)

Shadowing is considered bad style and should be avoided

Shadowing
ML Concepts

Restarting the REPL between loading of files prevents weirdness caused
by shadowing

Suppose I had a file example.sml containing

val x = 8 (* x -> int *);

val y = 2 (* y -> int *);

What happens after use example.sml; in the REPL?

Without restarting the REPL, I edit example.sml to look like

val x = 8 (* x -> int *);

What do I get when I do use example.sml; in the REPL?

Shadowing
ML Concepts

Restarting the REPL between loading of files prevents weirdness caused
by shadowing

Suppose I had a file example.sml containing

val x = 8 (* x -> int *);

val y = 2 (* y -> int *);

What happens after use example.sml; in the REPL?

Without restarting the REPL, I edit example.sml to look like

val x = 8 (* x -> int *);

What do I get when I do use example.sml; in the REPL?

Debugging
ML Concepts

* Demo *

Errors can occur at 3 stages:

• Syntax: Your program is not “valid SML” (e.g. omitting a keyword)

• Type Check: One of the type checking rules didn’t work out (e.g.
mismatching types of an if-then-else)

• Runtime: Your program did something while running that it
shouldn’t (e.g. division by zero)

Read and think deeply about what you write!

Debugging
ML Concepts

* Demo *

Errors can occur at 3 stages:

• Syntax: Your program is not “valid SML” (e.g. omitting a keyword)

• Type Check: One of the type checking rules didn’t work out (e.g.
mismatching types of an if-then-else)

• Runtime: Your program did something while running that it
shouldn’t (e.g. division by zero)

Read and think deeply about what you write!

Comparison Operators
ML Concepts

You can compare numbers in SML

These operators take two expressions that evaluate to int and give you a
bool

= (Equality) < (Less than) <= (Less than or equal)

<> (Inequality) > (Greater than) >= (Greater than or equal)

Logical Operators
ML Concepts

You can chain ‘bool‘s together in SML

Opearation Syntax Types Evaluation

andalso e1 andalso e2 e1 and e2 eval to bool Same as Java’s e1 && e2

orelse e1 orelse e2 e1 and e2 eval to bool Same as Java’s e1 || e2

not not e1 e1 evals to bool Same as Java’s !e1

	Introduction
	Course Resources
	Setup
	ML Concepts

