
CSE 341
Section 9

Fall 2018

Adapted from slides by Nick Mooney, Nicholas Shahan, Cody Schroeder, and Dan Grossman

Today’s Agenda

• Double Dispatch Again
• Mixins
• The Visitor Pattern

2

Dispatch Overview

Dispatch is the runtime procedure for looking up which function to
call based on the parameters given. For example:

class SuperClass {

protected void m1() { a; }
}

class SubClass {
protected void m1() { b; }

}

SuperClass obj = new SubClass();
obj.m1();

// runtime figures out obj’s dynamic type
// and which instance method to call

3

Dispatch Overview

Dispatch is the runtime procedure for looking up which function to
call based on the parameters given:
• Ruby (and Java) use Single Dispatch on the implicit self

parameter
• Uses runtime class of self to lookup the method when a call is made
• This is what you learned in CSE 143
• Review Ruby method lookup in lecture 21 slides p#5

• Double Dispatch uses the runtime classes of both self and a
single method parameter
• Ruby/Java do not have this, but we can emulate it
• This is what you will do in HW7

• You can dispatch on any number of the parameters and the
general term for this is Multiple Dispatch or Multimethods

4

Emulating Double Dispatch

• To emulate double dispatch in Ruby (on HW7) just use
the built-in single dispatch procedure twice!
• Have the principal method immediately call another method

on its first parameter, passing self as an argument
• The second call will implicitly know the class of the self

parameter
• It will also know the class of the first parameter of the

principal method, because of Single Dispatch
• There are other ways to emulate double dispatch
• Found as an idiom in SML by using case expressions (not

OOP style)

5

Double Dispatch Example

6

class A
def f x

x.fWithA self
end

def fWithA a
"(a, a) case"

end

def fWithB b
"(b, a) case"

end
end

class B
def f x

x.fWithB self
end

def fWithA a
"(a, b) case"

end

def fWithB b
"(b, b) case"

end
end

Mixins

• A mixin is (just) a collection of methods
• Less than a class: no instances of it

• Languages with mixins (e.g., Ruby modules) typically
let a class have one superclass but include any
number of mixins
• Semantics: Including a mixin makes its methods part

of the class
• Extending or overriding in the order mixins are included in the

class definition
• More powerful than helper methods because mixin methods

can access methods (and instance variables) on self not
defined in the mixin

7

Mixin Example

8

module Doubler
def double
self + self # assume included in classes w/ +

end
end
class String
include Doubler

end
class AnotherPt
attr_accessor :x, :y
include Doubler
def + other
ans = AnotherPt.new
ans.x = self.x + other.x
ans.y = self.y + other.y
ans

end

Method Lookup Rules

Mixins change our lookup rules slightly:
obj.m()
• When looking for receiver obj's method m, look in
obj's class, then mixins that class includes (later
includes shadow), then obj's superclass, then the
superclass' mixins, etc.
• As for instance variables, the mixin methods are

included in the same object
• So usually bad style for mixin methods to use instance

variables since names can clash

9

The Two Big Ones

The two most popular/useful mixins in Ruby:
• Comparable: Defines <, >, ==, !=, >=, <= in terms of <=>

• http://ruby-doc.org/core-2.2.3/Comparable.html

• Enumerable: Defines many iterators (e.g., map, find) in
terms of each
• http://ruby-doc.org/core-2.2.3/Enumerable.html

• Great examples of using mixins:
• Classes including them get a bunch of methods for just a little

work
• Classes do not “spend” their “one superclass” for this
• Does not bring on the complexity of multiple inheritance

10

http://ruby-doc.org/core-2.2.3/Comparable.html
http://ruby-doc.org/core-2.2.3/Enumerable.html

The Visitor Pattern

• A template for handling a functional composition in
OOP
• OOP wants to group code by classes
• We want code grouped by functions

• This makes it easier to add operations at a later time.

• Relies on Double Dispatch!!!
• Dispatch based on (VisitorType, ValueType) pairs.

• Often used to compute over AST’s (abstract syntax
trees)
• Heavily used in compilers

11

Extensibility

• the Visitor Pattern makes OOP programs more easily
extensible with new functionality
• In class Mult : accept method
• In visitor classes: + 1 method/class to deal with Mult
• No need to change the existing class Int, Add or Negate

