
CSE 341: Section 7
Tam Dang

University of Washington

November 8, 2018



Outline

Interpreting Language B using Language A

Macros

Quoting & Self Interpretation



Building an Interpreter for B
Assumptions, Semantics, and Evaluation

• We are skipping the parsing phase ← Do Not Implement

• Interpreter is written in Racket

• Racket in this case is the metalanguage A

• Language B syntax will be represented with an AST

• AST nodes made up of B’s constructors will be structs to Racket
• Allows us to skip the parsing stage (it’s already parsed this way!)

• You assume AST input has valid syntax

• You cannot assume an AST has correct semantics



Building an Interpreter for B
Assumptions, Semantics, and Evaluation

• We are skipping the parsing phase ← Do Not Implement

• Interpreter is written in Racket

• Racket in this case is the metalanguage A

• Language B syntax will be represented with an AST

• AST nodes made up of B’s constructors will be structs to Racket
• Allows us to skip the parsing stage (it’s already parsed this way!)

• You assume AST input has valid syntax

• You cannot assume an AST has correct semantics



Building an Interpreter for B
Assumptions, Semantics, and Evaluation

• We are skipping the parsing phase ← Do Not Implement

• Interpreter is written in Racket

• Racket in this case is the metalanguage A

• Language B syntax will be represented with an AST

• AST nodes made up of B’s constructors will be structs to Racket
• Allows us to skip the parsing stage (it’s already parsed this way!)

• You assume AST input has valid syntax

• You cannot assume an AST has correct semantics



Building an Interpreter for B
Assumptions, Semantics, and Evaluation

• We are skipping the parsing phase ← Do Not Implement

• Interpreter is written in Racket

• Racket in this case is the metalanguage A

• Language B syntax will be represented with an AST

• AST nodes made up of B’s constructors will be structs to Racket
• Allows us to skip the parsing stage (it’s already parsed this way!)

• You assume AST input has valid syntax

• You cannot assume an AST has correct semantics



Building an Interpreter for B
Assumptions, Semantics, and Evaluation

• We are skipping the parsing phase ← Do Not Implement

• Interpreter is written in Racket

• Racket in this case is the metalanguage A

• Language B syntax will be represented with an AST

• AST nodes made up of B’s constructors will be structs to Racket
• Allows us to skip the parsing stage (it’s already parsed this way!)

• You assume AST input has valid syntax

• You cannot assume an AST has correct semantics



Building an Interpreter for B
Assumptions, Semantics, and Evaluation

• We are skipping the parsing phase ← Do Not Implement

• Interpreter is written in Racket

• Racket in this case is the metalanguage A

• Language B syntax will be represented with an AST

• AST nodes made up of B’s constructors will be structs to Racket
• Allows us to skip the parsing stage (it’s already parsed this way!)

• You assume AST input has valid syntax

• You cannot assume an AST has correct semantics



Building an Interpreter for B
Correct Syntax Examples

Using these Racket structs (i.e. using syntax and semantics of A):

(struct int (num) #:transparent)

(struct add (e1 e2) #:transparent)

(struct ifnz (e1 e2 e3) #:transparent)

We can interpret programs written in B:

(int 34)

(add (int 34) (int 30))

(ifnz (add (int 5) (int 7)) (int 12) (int 1))



Building an Interpreter for B
Incorrect Syntax Examples

Using these Racket structs (i.e. using syntax and semantics of A):

(struct int (num) #:transparent)

(struct add (e1 e2) #:transparent)

(struct ifnz (e1 e2 e3) #:transparent)

You can assume you won’t see programs in B like this:

(int "dan then dog")

(int (ifnz (int 0) (int 5) (int 7)))

(add (int 8) #t)

(add 5 4)



Building an Interpreter for B
Language A vs. Language B

In Racket, our langauage A, structs can take any Racket value:

(struct int (num) #:transparent)

(struct add (e1 e2) #:transparent)

(struct ifnz (e1 e2 e3) #:transparent)

But in B, we restrict int to take only an integer value, add to take two
B expressions, and so on:

(int "dan then dog")

(int (ifnz (int 0) (int 5) (int 7)))

(add (int 8) #t)

(add 5 4)

So the above is valid syntax in Racket, but not valid syntax for B

Illegal input ASTs may crash the interpreter; this is OK



Building an Interpreter for B
Language A vs. Language B

In Racket, our langauage A, structs can take any Racket value:

(struct int (num) #:transparent)

(struct add (e1 e2) #:transparent)

(struct ifnz (e1 e2 e3) #:transparent)

But in B, we restrict int to take only an integer value, add to take two
B expressions, and so on:

(int "dan then dog")

(int (ifnz (int 0) (int 5) (int 7)))

(add (int 8) #t)

(add 5 4)

So the above is valid syntax in Racket, but not valid syntax for B

Illegal input ASTs may crash the interpreter; this is OK



Building an Interpreter for B
Language A vs. Language B

In Racket, our langauage A, structs can take any Racket value:

(struct int (num) #:transparent)

(struct add (e1 e2) #:transparent)

(struct ifnz (e1 e2 e3) #:transparent)

But in B, we restrict int to take only an integer value, add to take two
B expressions, and so on:

(int "dan then dog")

(int (ifnz (int 0) (int 5) (int 7)))

(add (int 8) #t)

(add 5 4)

So the above is valid syntax in Racket, but not valid syntax for B

Illegal input ASTs may crash the interpreter; this is OK



Building an Interpreter for B
Evaluating the AST

• eval-exp should return a value of language B

• Values in language B evaluate to themselves

• Otherwise,we have an unsimplified expression in B

(int 7) ; evaluates to (int 7)

(add (int 3) (int 4)) ; evaluates to (int 7)



Building an Interpreter for B
Evaluating the AST

• eval-exp should return a value of language B

• Values in language B evaluate to themselves

• Otherwise,we have an unsimplified expression in B

(int 7) ; evaluates to (int 7)

(add (int 3) (int 4)) ; evaluates to (int 7)



Building an Interpreter for B
Checking for Correct Semantics

What if the program is a valid AST, but evaluation of it tries to use the
wrong kind of value?

(add (int 3) (bool #f)) ; evaluates to ?

You should detect this and give an error message that is not in
terms of the interpreter implementation

We need to check that the type of a recursive result is what we expect

• No need to check if any type is acceptable



Building an Interpreter for B
Checking for Correct Semantics

What if the program is a valid AST, but evaluation of it tries to use the
wrong kind of value?

(add (int 3) (bool #f)) ; evaluates to ?

You should detect this and give an error message that is not in
terms of the interpreter implementation

We need to check that the type of a recursive result is what we expect

• No need to check if any type is acceptable



Building an Interpreter for B
Checking for Correct Semantics

What if the program is a valid AST, but evaluation of it tries to use the
wrong kind of value?

(add (int 3) (bool #f)) ; evaluates to ?

You should detect this and give an error message that is not in
terms of the interpreter implementation

We need to check that the type of a recursive result is what we expect

• No need to check if any type is acceptable



Building an Interpreter for B
Checking for Correct Semantics

What if the program is a valid AST, but evaluation of it tries to use the
wrong kind of value?

(add (int 3) (bool #f)) ; evaluates to ?

You should detect this and give an error message that is not in
terms of the interpreter implementation

We need to check that the type of a recursive result is what we expect

• No need to check if any type is acceptable



Macros Review

1. Extend language syntax

2. Written in terms of existing syntax

3. Expanded before language is actually interpreted or compiled

• The macro itself is never evaluated beyond its replacement with
different syntax



Macros for Language B

• Interpreting B using Racket as the metalanguage A

• Language B is made up of Racket structs

• Why not write a Racket function that returns ASTs in the syntax of
language B?

Define macros for B using Racket functions

(define (++ exp) (add (int 1) exp))

This extends language B to have the syntax (++ exp) where exp is an
expression in B



Macros for Language B

• Interpreting B using Racket as the metalanguage A

• Language B is made up of Racket structs

• Why not write a Racket function that returns ASTs in the syntax of
language B?

Define macros for B using Racket functions

(define (++ exp) (add (int 1) exp))

This extends language B to have the syntax (++ exp) where exp is an
expression in B



Macros for Language B

• Interpreting B using Racket as the metalanguage A

• Language B is made up of Racket structs

• Why not write a Racket function that returns ASTs in the syntax of
language B?

Define macros for B using Racket functions

(define (++ exp) (add (int 1) exp))

This extends language B to have the syntax (++ exp) where exp is an
expression in B



Macros for Language B

• Interpreting B using Racket as the metalanguage A

• Language B is made up of Racket structs

• Why not write a Racket function that returns ASTs in the syntax of
language B?

Define macros for B using Racket functions

(define (++ exp) (add (int 1) exp))

This extends language B to have the syntax (++ exp) where exp is an
expression in B



Macros for Language B

Define macros for B using Racket functions

(define (++ exp) (add (int 1) exp))

This extends language B to have the syntax (++ exp) where exp is an
expression in B

What happens when we use (++ exp) when writing code in language B?

• Replace with existing syntax in language B: (add (int 1) exp)

• This replacement is done by evaluating the Racket function in Racket

• Evaluate the resulting language B code

Is this any different from macros as we know them?

• No! Clients have no idea how the replacement is being done



Macros for Language B

Define macros for B using Racket functions

(define (++ exp) (add (int 1) exp))

This extends language B to have the syntax (++ exp) where exp is an
expression in B

What happens when we use (++ exp) when writing code in language B?

• Replace with existing syntax in language B: (add (int 1) exp)

• This replacement is done by evaluating the Racket function in Racket

• Evaluate the resulting language B code

Is this any different from macros as we know them?

• No! Clients have no idea how the replacement is being done



Macros for Language B

Define macros for B using Racket functions

(define (++ exp) (add (int 1) exp))

This extends language B to have the syntax (++ exp) where exp is an
expression in B

What happens when we use (++ exp) when writing code in language B?

• Replace with existing syntax in language B: (add (int 1) exp)

• This replacement is done by evaluating the Racket function in Racket

• Evaluate the resulting language B code

Is this any different from macros as we know them?

• No! Clients have no idea how the replacement is being done



Macros for Language B

Define macros for B using Racket functions

(define (++ exp) (add (int 1) exp))

This extends language B to have the syntax (++ exp) where exp is an
expression in B

What happens when we use (++ exp) when writing code in language B?

• Replace with existing syntax in language B: (add (int 1) exp)

• This replacement is done by evaluating the Racket function in Racket

• Evaluate the resulting language B code

Is this any different from macros as we know them?

• No! Clients have no idea how the replacement is being done



Macros for Language B

Define macros for B using Racket functions

(define (++ exp) (add (int 1) exp))

This extends language B to have the syntax (++ exp) where exp is an
expression in B

What happens when we use (++ exp) when writing code in language B?

• Replace with existing syntax in language B: (add (int 1) exp)

• This replacement is done by evaluating the Racket function in Racket

• Evaluate the resulting language B code

Is this any different from macros as we know them?

• No! Clients have no idea how the replacement is being done



Macros for Language B

Define macros for B using Racket functions

(define (++ exp) (add (int 1) exp))

This extends language B to have the syntax (++ exp) where exp is an
expression in B

What happens when we use (++ exp) when writing code in language B?

• Replace with existing syntax in language B: (add (int 1) exp)

• This replacement is done by evaluating the Racket function in Racket

• Evaluate the resulting language B code

Is this any different from macros as we know them?

• No! Clients have no idea how the replacement is being done



Quoting

• Syntactically, Racket statements can be thought of as lists of tokens

• (+ 3 4) is a “plus sign”, a “3”, and a “4”

• quote-ing a parenthesized expression produces a list of tokens

Examples:

(+ 3 4) ; 7

(quote (+ 3 4)) ; ’(+ 3 4)

(quote (+ 3 #t)) ; ’(+ 3 #t)

(+ 3 #t) ; Error

Syntactic sugar for quoting and evaluation exists (use ‘ instead of quote)
but we won’t get into it



Quasiquote

Allows evaluation of particular tokens into a quote

(quote (+ 3 (+ 2 2))) ; (list ’+ ’3 ’(+ 2 2))

(quasiquote (+ 3 (unquote(+ 2 2)))) ; (list ’+ ’3 ’4)

• Convenient for generating dynamic token lists

• Use unquote to escape a quasiquote back to evaluated Racket code

• A quasiquote and quote are equivalent unless we use an unquote
operation

(quasiquote

(string-append

"I love CSE"

(number->string

(unquote (+ 3 338)))))

; ’(string-append "I love CSE" (number->string 341))



Quasiquote

Allows evaluation of particular tokens into a quote

(quote (+ 3 (+ 2 2))) ; (list ’+ ’3 ’(+ 2 2))

(quasiquote (+ 3 (unquote(+ 2 2)))) ; (list ’+ ’3 ’4)

• Convenient for generating dynamic token lists

• Use unquote to escape a quasiquote back to evaluated Racket code

• A quasiquote and quote are equivalent unless we use an unquote
operation

(quasiquote

(string-append

"I love CSE"

(number->string

(unquote (+ 3 338)))))

; ’(string-append "I love CSE" (number->string 341))



Quasiquote

Allows evaluation of particular tokens into a quote

(quote (+ 3 (+ 2 2))) ; (list ’+ ’3 ’(+ 2 2))

(quasiquote (+ 3 (unquote(+ 2 2)))) ; (list ’+ ’3 ’4)

• Convenient for generating dynamic token lists

• Use unquote to escape a quasiquote back to evaluated Racket code

• A quasiquote and quote are equivalent unless we use an unquote
operation

(quasiquote

(string-append

"I love CSE"

(number->string

(unquote (+ 3 338)))))

; ’(string-append "I love CSE" (number->string 341))



Self Interpretation

• Many languages provide an eval function or something similar

• Performs interpretation or compilation at runtime

• But needs the full language implementation at runtime

• It’s useful, but there’s usually a better way

• Makes analysis, debugging difficult



Eval

• Racket’s eval operates on lists of tokens

• Like those generated from quote and quasiquote

• Treat the input data as a program and evaluate it

(define quoted (quote (+ 3 4)))

(eval quoted)

(define bad-quoted (quote (+ 3 #t)))

(eval bad-quoted)

(define qquoted (quasiquote (+ 3 (unquote(+ 2 2)))))

(eval qquoted)

(define big-qquoted

(quasiquote

(string-append

"I love CSE"

(number->string

(unquote (+ 3 338))))))

(eval big-qquoted



Variable Number of Arguments

• Some functions (like +) can take a variable number of arguments

• There is syntax that lets you define your own

(define fn-any

(lambda xs ; any number of args

(print xs)))

(define fn-1-or-more

(lambda (a . xs) ; at least 1 arg

(begin (print a) (print xs))))

(define fn-2-or-more

(lambda (a b . xs) ; at least 2 args

(begin (print a) (print a) (print xs))))



Apply

apply applies a list of values as the arguments to a function in order by
position

(define fn-any

(lambda xs ; any number of args

(print xs)))

(apply fn-any (list 1 2 3 4))

(apply + (list 1 2 3 4)) ; 10

(apply max (list 1 2 3 4)) ; 4


	Interpreting Language B using Language A
	Macros
	Quoting & Self Interpretation

