
Anonymity, Polymorphism pt.2, and Higher Order

Anonymous Functions/Unnecessary Function Wrapping

Re-write the following functions as val bindings to anonymous functions:

1. fun double x = x * 2;

val double = (fn x => x * 2);

2. fun identity x = x

val identity = (fn x => x);

3. fun apply_to_five f = f 5;

val apply_to_five = (fn x => x 5);

Re-write the following expressions without unnecessary “wrapping”:

1. if e then true else false → e

2. fn x => f x → f

Polymorphic Datatypes

Consider the following datatype binding that represents a binary tree:

datatype ('a, 'b) tree = Leaf of 'a | Node of 'b * ('a, 'b) tree * ('a, 'b) tree

● What expressions could this datatype support, and what are their types? List at least 3

here:

(string,’a) tree [i.e. a leaf with string. For example → Leaf “hi”]

(bool, string) tree [i.e. a branch with internal node values of bool and children that
leaves of type string. For example → Node(“a”, Leaf true, Leaf false)]

(string, string) tree [i.e. a branch with internal node values of bool and children
that leaves of type string. For example → Node(“a”, Leaf “hi”, Leaf “bye”)]

...any type ‘a for leaves and any type ‘b for branch values! (as long as they agree)

● What expressions does this datatype not support, and what are their types? List at least

3 here:

Essentially, any type in which either the leaves or branches do not agree. E.g.:

Node(“hi”, Leaf true, Leaf “bye”)

Node(1, Leaf false, Leaf “hi”)

Higher Order Functions

Write the function definition for the following functions:
(Hint: which of map, filter, and fold could be useful here? Any previous function can be used?)

1. double_all which has type fn : int list -> int list. This takes an int list and returns an int
list whose elements are twice the original.

 fun double_all xs = map((fn x => x * 2), xs)

2. Write a function join with type ‘a list list -> ‘a list using foldr which returns the

concatenation of each element in its argument.

 fun join xss = fold((fn (acc, x) => x @ acc), [], xss)

or…. (closer to standard library)

 fun join xss = foldr((fn (acc, x) => x @ acc), [], xss)
 fun join xss = foldl((fn (acc, x) => acc @ x), [], xss)

3. count_zeros which has type fn : int list -> int. This takes an int list and returns the
number of times “0” appears.

 fun count_zeros xs = fold((fn (acc,x) => if x=0 then acc+1 else acc), 0, xs)
 fun count_zeros xs = sum(map((fn (x) => if x=0 then 1 else 0), xs))
 fun count_zeros xs = length(filter((fn (x) => x=0), xs))

4. Consider the following definitions (from HW1):

type date = int * int * int
fun day (d : date) = #1 d
fun month (d : date) = #2 d
fun year (d : date) = #3 d

Write a function number_in_month whose type is fn : ('a * ''b * 'c) list * ''b -> bool. This
takes a list of dates and a month and returns the number of dates that are in the given
month. (hint: which of map, filter, and fold could be useful here?)

fun is_in_month((_,m,_), month) = (m = month);

fun number_in_month(dates, month) =
 let
 fun check_date d = is_in_month(d, month)
 in
 length(List.filter check_date dates)
 end

Or…

fun number_in_month(dates, month) =
 length(filter((fn (_,m,_) => m = month), dates))

5. Write a function flat_map which has type fn : ('a -> 'b list) * 'a list -> 'b list. This function
should take a function as its first argument which maps elements of the second
argument to lists, and then flat_map should return the concatenation of those lists. (hint:
does this sound familiar?)

fun flat_map (f, xs) =
 case xs of
 [] => []
 | x::xs' => (f x) @ flat_map (f, xs')

