
CSE341
Section 3

Standard-Library Docs, First-Class Functions, & More



1. SML Docs
• Standard Basis

2. Polymorphic Datatypes

3. First-Class Functions
• Anonymous

• Style Points

• Higher-Order

Agenda



Standard Basis Documentation
Online Documentation

http://www.standardml.org/Basis/index.html

http://www.smlnj.org/doc/smlnj-lib/Manual/toc.html

Helpful Subset

Top-Level http://www.standardml.org/Basis/top-level-chapter.html

List http://www.standardml.org/Basis/list.html

ListPair http://www.standardml.org/Basis/list-pair.html

Real http://www.standardml.org/Basis/real.html

String http://www.standardml.org/Basis/string.html

http://www.standardml.org/Basis/index.html
http://www.smlnj.org/doc/smlnj-lib/Manual/toc.html
http://www.standardml.org/Basis/top-level-chapter.html
http://www.standardml.org/Basis/list.html
http://www.standardml.org/Basis/list-pair.html
http://www.standardml.org/Basis/real.html
http://www.standardml.org/Basis/string.html


Higher-Order Functions
Definition: A function that returns a function or takes a function as an argument.

• SML functions can be passed around like any other value.

• They can be passed as function arguments, returned, and even stored in data 
structures or variables.

• Generalized functions such as these are very pervasive in functional languages 
(and are starting to creep into more Object-Oriented ones too ala Java!



Canonical Higher-Order Functions

Note: List.map, List.filter, and List.foldr/foldl are similarly defined in SML but use currying. We'll 
cover these later in the course.



map

● map : ('a -> 'b) * 'a list -> 'b list

What does the type tell is?

● What are the arguments? 

● What is the return type? 

● What could be a hypothesis for what this function is supposed to do?

● map applies a function to every element of a list and return a list of the 

resulting values.

– Example: map (fn x => x*3, [1,2,3]) === [3,6,9]



filter

● filter returns the list of elements from the original list that, when a 
predicate function is applied, result in true.

– Example: filter (fn x => x>2, [~5,3,2,5]) === [3,5]

What could be the type of this function? 

● What are the arguments? 

● What is the return type? 
● What could be a hypothesis for what this function is supposed to do? 

● filter : ('a -> bool) * 'a list -> 'a list



fold

• fold : ('a * 'b -> 'a) * 'a * 'b list -> 'a

– Returns a “thing” that is the accumulation of the first argument applied to the 
third arguments elements stored in the second argument. 

– Example: fold((fn (a,b) => a + b), 0, [1,2,3]) === 6



Polymorphic Datatypes

Suppose we want to create a tree datatype

• A node can be a leaf
• A node can be the root of a subtree



Polymorphic Datatypes

We solve this problem by having polymorphic 
datatypes:

datatype (‘a, ‘b) tree = 

Leaf of ‘a

| Node of ‘b * (‘a, ‘b) tree * (‘a, ‘b) 

tree



Anonymous Functions
An Anonymous Function

fn pattern => expression

• An expression that creates a new function with no name.

• Usually used as an argument to a higher-order function.

• Almost equivalent to the following:

let fun name pattern = expression in name end

What’s the difference? What can you do with one that you can’t do with the other? 

• The difference is that anonymous functions cannot be recursive!!!



Anonymous Functions
What's the difference between the following two bindings?

val name = fn pattern => expression;

fun name pattern = expression;

• Once again, the difference is recursion.

• However, excluding recursion, a fun binding could just be syntactic sugar for a 
val binding and an anonymous function.



Unnecessary Function Wrapping
What's the difference between the following two expressions?

(fn xs => tl xs) vs. tl

STYLE POINTS!

• Other than style, these two expressions result in the exact same thing.

• However, one creates an unnecessary function to wrap tl.

• This is very similar to this style issue:

(if ex then true else false) vs. ex


