
CSE 341
Section 1 (9/27)

Daniel Snitkovskiy: OH Wednesdays 1:30-2:30, CSE 4th Floor Breakout

Lanhao Wu: OH Mondays 3:00-4:00, CSE 2nd Floor Breakout

Agenda
● Introduction

● Setup: get everything running

● Emacs Basics

● ML development workflow

● Shadowing

● Debugging

● Comparison Operators

● Boolean Operators

● Testing

Introduction
Daniel Snitkovskiy

● Interested in Data Science, CS Education, and Systems.

● Information systems are all around us, and it is a hard problem to make sure
that these systems are reliable, accessible, and trustworthy

● Enjoy music and playing with my dog

● I try to be approachable but that doesn’t always work out (but don’t let that
stop you from asking lots of questions!)

Introduction
Lanhao Wu

● Senior student at UW CSE, interest in NLP, probabilistics.

● 341 is cool, and it’s mind changing

● Daniel’s music is pretty good IMO :)

● Feel free to ask questions! I always get inspired by others questions

● Section didn’t go as expected? Talk to us!

Icebreaker Time!

Joke Completer
● Notecards will be passed out that have statements and 1-letter identifiers in

the top left corner.
○ Notecards with “S” on the top-right are “set-ups” to cheesy CS jokes, and “P” indicates a

punchline.

● How this will work:
○ Every person with an “S” will stand-up.
○ We will go around the room, each person reading their set-up.
○ For each person that reads a set-up, the person with the matching punchline (“P” card) should

also stand up and read their card.
○ After a full joke has been read, both people can sit down, and we will move onto the next

person with an “S” card.
○ Repeat until every cheesy joke has been read.

Course Resources
We have a ton of course resources. Please use them!

If you get stuck or need help:

● Email the staff list! cse341-staff@cs.washington.edu

● Come to Office Hours (Every Weekday, see website)

We’re here for you

mailto:cse341-staff@cs.washington.edu

Setup
Excellent guide located on the course website:
https://courses.cs.washington.edu/courses/cse341/18au/sml_emacs.pdf

You need 3 things installed:

● Emacs

● SML

● SML mode for Emacs

Emacs Basics
Don’t be scared!

Commands have particular notation: C-x means hold Ctrl while pressing x

Meta key is Alt (thus M-z means hold Alt, press z)

C-x C-s is Save File

C-x C-f is Open File

C-x C-c is Exit Emacs

C-g is Escape (Abort any partial command you may have entered)

ML Development Workflow
REPL means Read Eval Print Loop

You can type in any ML code you want, it will evaluate it

Useful to put code in .sml file for reuse

Every command must end in a semicolon (;)

Load .sml files into REPL with use command

Shadowing

val a = 1;
val b = 2;
val a = 3;

a -> int
a -> int, b -> int
a -> int, b -> int, a -> int

a -> 1
a -> 1, b -> 2
a -> 1, b -> 2, a -> 3

You can’t change a variable, but you can add another with the same name

When looking for a variable definition, most recent is always used

Shadowing is usually considered bad style

Shadowing
This behavior, along with use in the REPL can lead to confusing effects

Suppose I have the following program:

I load that into the REPL with use. Now, I decide to change my program, and I
delete a line, giving this:

I load that into the REPL without restarting the REPL. What goes wrong?

(Hint: what is the value of y?)

val x = 8;
val y = 2;

val x = 8;

Debugging

Errors can occur at 3 stages:

● Syntax: Your program is not “valid SML” in some (usually small and
annoyingly nitpicky) way

● Type Check: One of the type checking rules didn’t work out

● Runtime: Your program did something while running that it shouldn’t

The best way to debug is to read what you wrote carefully, and think about it.

Comparison Operators
You can compare numbers in SML!

Each of these operators has 2 subexpressions of type int, and produces a bool

= (Equality) < (Less than) <= (Less than or
equal)

<> (Inequality) > (Greater than) >= (Greater than
or equal)

Boolean Operators
You can also perform logical operations over bools!

Operation Syntax Type-Checking Evaluation

andalso e1 andalso e2 e1 and e2 have
type bool

Same as Java’s
e1 && e2

orelse e1 orelse e2 e1 and e2 have
type bool

Same as Java’s
e1 || e2

not not e1 e1 has type bool Same as Java’s
!e1

Technical note: andalso/orelse are SML builtins as they use short-circuit evaluation.

Testing
We don’t have a unit testing framework (too heavyweight for 5 weeks)

You should still test your code!

val test1 = ((4 div 4) = 1);

(* Neat trick for creating hard-fail tests: *)

val true = ((4 div 4) = 1);

