CSE341: Programming Languages

Lecture 6
Nested Patterns
Exceptions
Tail Recursion

Dan Grossman
Autumn 2018
Nested patterns

- We can nest patterns as deep as we want
 - Just like we can nest expressions as deep as we want
 - Often avoids hard-to-read, wordy nested case expressions

- So the full meaning of pattern-matching is to compare a pattern against a value for the “same shape” and bind variables to the “right parts”
 - More precise recursive definition coming after examples
Useful example: zip/unzip 3 lists

fun zip3 lists =
 case lists of
 ([],[],[]) => []
 | (hd1::tl1,hd2::tl2,hd3::tl3) =>
 (hd1,hd2,hd3)::zip3(tl1,tl2,tl3)
 | _ => raise ListLengthMismatch

fun unzip3 triples =
 case triples of
 [] => ([],[],[])
 | (a,b,c)::tl =>
 let val (l1, l2, l3) = unzip3 tl
 in
 (a::l1,b::l2,c::l3)
 end

More examples in .sml files
Style

• Nested patterns can lead to very elegant, concise code
 – Avoid nested case expressions if nested patterns are simpler and avoid unnecessary branches or let-expressions
 • Example: `unzip3` and `nondecreasing`
 – A common idiom is matching against a tuple of datatypes to compare them
 • Examples: `zip3` and `multsign`

• Wildcards are good style: use them instead of variables when you do not need the data
 – Examples: `len` and `multsign`
(Most of) the full definition

The semantics for pattern-matching takes a pattern \(p \) and a value \(v \) and decides (1) does it match and (2) if so, what variable bindings are introduced.

Since patterns can nest, the definition is elegantly recursive, with a separate rule for each kind of pattern. Some of the rules:

- If \(p \) is a variable \(x \), the match succeeds and \(x \) is bound to \(v \)
- If \(p \) is \(_ \), the match succeeds and no bindings are introduced
- If \(p \) is \((p_1, \ldots, p_n) \) and \(v \) is \((v_1, \ldots, v_n) \), the match succeeds if and only if \(p_1 \) matches \(v_1 \), \ldots, \(p_n \) matches \(v_n \). The bindings are the union of all bindings from the submatches
- If \(p \) is \(C \ p_1 \), the match succeeds if \(v \) is \(C \ v_1 \) (i.e., the same constructor) and \(p_1 \) matches \(v_1 \). The bindings are the bindings from the submatch.
- … (there are several other similar forms of patterns)
Examples

- Pattern \texttt{a::b::c::d} matches all lists with ≥ 3 elements
- Pattern \texttt{a::b::c::[]} matches all lists with 3 elements
- Pattern \texttt{((a,b),(c,d))::e} matches all non-empty lists of pairs of pairs
Exceptions

An exception binding introduces a new kind of exception

```
exception MyUndesirableCondition
exception MyOtherException of int * int
```

The `raise` primitive raises (a.k.a. throws) an exception

```
raise MyUndesirableException
raise (MyOtherException (7,9))
```

A handle expression can handle (a.k.a. catch) an exception

- If doesn’t match, exception continues to propagate

```
e1 handle MyUndesirableException => e2
e1 handle MyOtherException(x,y) => e2
```
Actually…

Exceptions are a lot like datatype constructors…

• Declaring an exception adds a constructor for type \texttt{exn}

• Can pass values of \texttt{exn} anywhere (e.g., function arguments)
 – Not too common to do this but can be useful

• \texttt{handle} can have multiple branches with patterns for type \texttt{exn}
Recursion

Should now be comfortable with recursion:

• No harder than using a loop (whatever that is 😊)

• Often much easier than a loop
 – When processing a tree (e.g., evaluate an arithmetic expression)
 – Examples like appending lists
 – Avoids mutation even for local variables

• Now:
 – How to reason about efficiency of recursion
 – The importance of tail recursion
 – Using an accumulator to achieve tail recursion
 – [No new language features here]
Call-stacks

While a program runs, there is a *call stack* of function calls that have started but not yet returned

- Calling a function f pushes an instance of f on the stack
- When a call to f finishes, it is popped from the stack

These stack-frames store information like the value of local variables and “what is left to do” in the function

Due to recursion, multiple stack-frames may be calls to the same function
Example

```ml
fun fact n = if n=0 then 1 else n*fact(n-1)
val x = fact 3
```

```
fact 3
   fact 3: 3*_fact 2
      fact 2: 2*_fact 1
         fact 1: 1*_fact 0
             fact 0: 1
```

```
 fact 3: 3*_fact 2: 2*_fact 1: 1*fact 0
```

```
 fact 3: 3*_fact 2: 2*_fact 1: 1*1fact 0
```

```
 fact 3: 3*_fact 2: 2*_fact 1: 1*2fact 0
```

```
 fact 3: 3*_fact 2: 2*_fact 1: 1*1fact 0
```

```
 fact 3: 3*_fact 2: 2*_fact 1: 1*2fact 0
```

```
 fact 3: 3*_fact 2: 2*_fact 1: 1*1fact 0
```

```
 fact 3: 3*_fact 2: 2*_fact 1: 1*2fact 0
```

```
 fact 3: 3*_fact 2: 2*_fact 1: 1*1fact 0
```

```
 fact 3: 3*_fact 2: 2*_fact 1: 1*2fact 0
```

```
```
fun fact n =
 let fun aux(n,acc) =
 if n=0
 then acc
 else aux(n-1,acc*n)
 in
 aux(n,1)
 end
 in
 aux(n,1)
end
val x = fact 3

Still recursive, more complicated, but the result of recursive calls is the result for the caller (no remaining multiplication)
The call-stacks

fact 3
aux(3,1)
aux(2,3)
aux(1,6)
aux(0,6)

fact 3:__
aux(3,1):__
aux(2,3):__
aux(1,6):__
aux(0,6):6

fact 3:__
aux(3,1):__
aux(2,3):__
aux(1,6):__
aux(0,6):6

Etc…
An optimization

It is unnecessary to keep around a stack-frame just so it can get a callee’s result and return it without any further evaluation.

ML recognizes these *tail calls* in the compiler and treats them differently:

- Pop the caller *before* the call, allowing callee to *reuse* the same stack space
- (Along with other optimizations,) as efficient as a loop

Reasonable to assume all functional-language implementations do tail-call optimization.
What really happens

fun fact n =
 let fun aux(n,acc) =
 if n=0
 then acc
 else aux(n-1,acc*n)
 in
 aux(n,1)
 end
val x = fact 3
Moral of tail recursion

• Where reasonably elegant, feasible, and important, rewriting functions to be *tail-recursive* can be much more efficient
 – Tail-recursive: recursive calls are tail-calls

• There is a *methodology* that can often guide this transformation:
 – Create a helper function that takes an *accumulator*
 – Old base case becomes initial accumulator
 – New base case becomes final accumulator
Methodology already seen

fun fact n =
 let fun aux(n,acc) =
 if n=0
 then acc
 else aux(n-1,acc*n)
 in
 aux(n,1)
 end

val x = fact 3
Another example

```haskell
fun sum xs =
    case xs of
        [] => 0
    | x::xs' => x + sum xs'
```

```haskell
fun sum xs =
    let fun aux(xs,acc) =
        case xs of
            [] => acc
        | x::xs' => aux(xs',x+acc)
    in
        aux(xs,0)
    end
```
And another

```ml
fun rev xs =  
case xs of  
    [] => []  
  | x::xs' => (rev xs') @ [x]
```

```ml
fun rev xs =  
let fun aux(xs,acc) =  
case xs of  
    [] => acc  
  | x::xs' => aux(xs',x::acc)  
in
  aux(xs,[])
end
```
Actually much better

fun rev xs =
case xs of
 [] => []
| x::xs' => (rev xs') @ [x]

• For fact and sum, tail-recursion is faster but both ways linear time
• Non-tail recursive rev is quadratic because each recursive call uses append, which must traverse the first list
 – And 1+2+…+(length-1) is almost length*length/2
 – Moral: beware list-append, especially within outer recursion
• Cons constant-time (and fast), so accumulator version much better
Always tail-recursive?

There are certainly cases where recursive functions cannot be evaluated in a constant amount of space.

Most obvious examples are functions that process trees.

In these cases, the natural recursive approach is the way to go
 – You could get one recursive call to be a tail call, but rarely worth the complication.

Also beware the wrath of premature optimization
 – Favor clear, concise code
 – But do use less space if inputs may be large
What is a tail-call?

The “nothing left for caller to do” intuition usually suffices
 – If the result of \(\mathbf{f} \ x \) is the “immediate result” for the enclosing function body, then \(\mathbf{f} \ x \) is a tail call

But we can define “tail position” recursively
 – Then a “tail call” is a function call in “tail position”

...
Precise definition

A tail call is a function call in tail position

• If an expression is not in tail position, then no subexpressions are

• In \texttt{fun f p = e}, the body \texttt{e} is in tail position

• If \texttt{if e1 then e2 else e3} is in tail position, then \texttt{e2} and \texttt{e3} are in tail position (but \texttt{e1} is not). (Similar for case-expressions)

• If \texttt{let b1 ... bn in e end} is in tail position, then \texttt{e} is in tail position (but no binding expressions are)

• Function-call arguments \texttt{e1 e2} are not in tail position

• ...

Autumn 2018 CSE341: Programming Languages 23