'W PAUL G ALLEN SCHOOL

CSE341: Programming Languages

Lecture 24
Subtyping

Dan Grossman
Autumn 2018

Last major topic: Subtyping

Build up key ideas from first principles
— In pseudocode because:
* No time for another language
« Simpler to first show subtyping without objects

Then:

 How does subtyping relate to types for OOP?
— Brief sketch only

 What are the relative strengths of subtyping and generics?

 How can subtyping and generics combine synergistically?

Autumn 2018 CSE341: Programming Languages

A tiny language

« Can cover most core subtyping ideas by just considering
records with mutable fields

* Will make up our own syntax

— ML has records, but no subtyping or field-mutation

— Racket and Ruby have no type system

— Java uses class/interface names and rarely fits on a slide

Autumn 2018 CSE341: Programming Languages

Records (half like ML, half like Java)

Record creation (field names and contents):

{fl=el, f2=e2, .., fn=en} Evaluate ei, make a record

Record field access:
e f Evaluate e to record v with an T field, get contents

of ¥ field

Record field update
o1 f = e2 Evaluate el toarecord vl and e2 to a value v2;

Change v1's T field (which must exist) to v2;
Return v2

Autumn 2018 CSE341: Programming Languages 4

A Basic Type System

Record types: What fields a record has and type for each field
{fl1:tl1, f2:t2, .., fn:tn}
Type-checking expressions:

 Ifel hastype tl, .., en has type tn,
then {fl=el, .., fn=en} hastype {fl:tl, .., fn:tn}

 |If e has arecord type containing T : t,
thene.f hastype t

 If el has arecord type containing ¥ - t and e2 has type t,
thenel.f = e2 hastype t

Autumn 2018 CSE341: Programming Languages

This Is safe

These evaluation rules and typing rules prevent ever trying to
access a field of a record that does not exist

Example program that type-checks (in a made-up language):

fun distToOrigin (p:{x:real,y:real}) =
Math.sqrt(p.x*p.x + p.y*p.y)

val pythag : {X:real,y:real} = {x=3.0, y=4.0}
val five : real = distToOrigin(pythag)

Autumn 2018 CSE341: Programming Languages

Motivating subtyping

But according to our typing rules, this program does not type-check
— It does nothing wrong and seems worth supporting

fun distToOrigin (p:{x:real,y:real}) =
Math.sqrt(p.x*p.x + p.y*p.y)

val ¢ - {x:real,y:real,color:string} =
{x=3.0, y=4.0, color=""green"}

val five : real = distToOrigin(c)

Autumn 2018 CSE341: Programming Languages 7

A good idea: allow extra fields

Natural idea: If an expression has type
{fl1:tl1, f2:t2, .., fn:tn}

Then it can also have a type with some fields removed

This is what we need to type-check these function calls:

fun distToOrigin (p:{x:real,y:real}) = .
fun makePurple (p:{color:string}) =
p.color = "purple”

val c {x:real,y:real,color:string} =
{x=3.0, y=4.0, color="green"}

val

val

distToOrigin(c)
makePurple(c)

Autumn 2018 CSE341: Programming Languages

Keeping subtyping separate

A programming language already has a lot of typing rules and we
do not want to change them

— Example: The type of an actual function argument must
equal the type of the function parameter

We can do this by adding “just two things to our language”
— Subtyping: Write t1 <: t2 for tlis a subtype of t2

— One new typing rule that uses subtyping:
If e has type tl1 and t1 <: t2,
then e (also) has type t2

Now all we need to do is define t1 <: t2

Autumn 2018 CSE341: Programming Languages

Subtyping Is not a matter of opinion

* Misconception: If we are making a new language, we can have
whatever typing and subtyping rules we want

* Not if you want to prevent what you claim to prevent [soundness]
— Here: No accessing record fields that do not exist

e Our typing rules were sound before we added subtyping
— We should keep it that way

* Principle of substitutability: If €1 <: t2, then any value of type
t1l must be usable in every way a t2 is

— Here: Any value of subtype needs all fields any value of
supertype has

Autumn 2018 CSE341: Programming Languages 10

Four good rules

For our record types, these rules all meet the substitutability test:

1. “Width” subtyping: A supertype can have a subset of fields with
the same types

2. “Permutation” subtyping: A supertype can have the same set of
flelds with the same types in a different order

3. Transitivity: If t1 <: t2 and t2 <: €3, then tl1 <: €3
4. Reflexivity: Every type is a subtype of itself

(4) may seem unnecessary, but it composes well with other rules in
a full language and “does no harm”

Autumn 2018 CSE341: Programming Languages 11

More record subtyping?

[Warning: | am misleading you ©)]

Subtyping rules so far let us drop fields but not change their types

Example: A circle has a center field holding another record

fun circleY (c:{center:{x:real,y:real}, r:real}) =
c.center.y

val sphere:{center:{x:real,y:real,z:real}, r:real} =
{center={x=3.0,y=4.0,z=0.0}, r=1.0}

val _ = circleY(sphere)

For this to type-check, we need:
{center:{x:real,y:real,z:real}, r:real}
<:
{center:{x:real,y:real}, r:real}
Autumn 2018 CSE341: Programming Languages 12

Do not have this subtyping — could we?

{center:{x:real,y:real,z:real}, r:real}
<:
{center:{x:real,y:real}, r:real}

 No way to get this yet: we can drop center, drop r, or permute
order, but cannot “reach into a field type” to do subtyping

« So why not add another subtyping rule... “Depth” subtyping:
If ta <: tb, then {fl:t1, .., f:ta, .., fntn} <:
{fl1:t1, .., f:tb, .., fn:tn}

* Depth subtyping (along with width on the field's type) lets our
example type-check

Autumn 2018 CSE341: Programming Languages 13

Stop!

It is nice and all that our new subtyping rule lets our example
type-check

But it is not worth it if it breaks soundness
— Also allows programs that can access missing record fields

Unfortunately, it breaks soundness ®

Autumn 2018 CSE341: Programming Languages

14

Mutation strikes again

If ta <: tb,
then {f1:tl1, .., f:ta, .., fn:tn} <:
{fl1:t1, .., f:tb, .., fn:tn}

fun setToOrigin (c:{center:{x:real,y:real}, r:real})=
c.center = {x=0.0, y=0.0}

val sphere:{center:{x:real,y:real,z:real}, r:real} =
{center={x=3.0, y=4.0, z=0.0}, r=1.0}

setToOrigin(sphere)
sphere.center.z (* kaboom! (no z field) *)

val
val

Autumn 2018 CSE341: Programming Languages 15

Moral of the story

* In alanguage with records/objects with getters and setters,
depth subtyping is unsound

— Subtyping cannot change the type of fields
« If fields are immutable, then depth subtyping is sound!
— Yet another benefit of outlawing mutation!

— Choose two of three: setters, depth subtyping, soundness

« Remember: subtyping is not a matter of opinion

Autumn 2018 CSE341: Programming Languages

16

Picking on Java (and C#)

Arrays should work just like records in terms of depth subtyping
— Butin Java, if t1 <: t2,then tl1[] <: t2[]

— So this code type-checks, surprisingly

class Point { .. }
class ColorPoint extends Point { .. }

Qoid mi(Point[] pt arr) {
pt _ arr[0] = new PoiInt(3,4);
}

String m2(int x) {
ColorPoint[] cpt arr = new ColorPoint|[Xx];
for(int 1=0; 1 < X; 1++)
cpt _arr[i1] = new ColorPoint(0,0,"green);
mi(cpt _arr); // !
return cpt_arr[O].color; // !

}

Autumn 2018 CSE341: Programming Languages 17

Why did they do this?

* More flexible type system allows more programs but prevents fewer
errors

— Seemed especially important before Java/C# had generics

* Good news: despite this “inappropriate” depth subtyping
— e.color will never fail due to there being no color field

— Array reads el[e2] always return a (subtype of) tifelisa t[]

 Bad news: to get the good news
— el[e2]=e3 canfail even if el has type t[] and e3 has type t

— Array stores check the run-time class of el's elements and do
not allow storing a supertype

— No type-system help to avoid such bugs / performance cost

Autumn 2018 CSE341: Programming Languages 18

So what happens

void ml(Point[] pt arr) {
pt _arr[0] = new Point(3,4); // can throw

}
String m2(int x) {
ColorPoint[] cpt _arr = new ColorPoint[x];

ml(cpt_arr); // "i1nappropriate"” depth subtyping
ColorPoint c = cpt_arr[0]; // fine, cpt arr

// will always hold (subtypes of) ColorPoints
return c.color; // fine, a ColorPoint has a color

}

e Causes code in ml to throw an ArrayStoreException
— Even though logical error is in m2

— At least run-time checks occur only on array stores, not on
field accesses like c.color

Autumn 2018 CSE341: Programming Languages 19

null

« Array stores probably the most surprising choice for flexibility over
static checking

 But null is the most common one in practice
— nul'l is not an object; it has no fields or methods
— But Java and C# let it have any object type (backwards, huh?!)

— S0, In fact, we do not have the static guarantee that evaluating
eine.fore.m(.) produces an object that has an ¥ or m

— The “or nul 1” caveat leads to run-time checks and errors, as
you have surely noticed

 Sometimes null is convenient (like ML's option types)
— But also having “cannot be nul I” types would be nice

Autumn 2018 CSE341: Programming Languages 20

Now functions

» Already know a caller can use subtyping for arguments passed
— Or on the result

* More interesting: When is one function type a subtype of another?

— Important for higher-order functions: If a function expects an
argument of type t1 ->t2, can you pass a t3 -> t4 instead?

— Coming next: Important for understanding methods

* (An object type is a lot like a record type where “method
positions” are immutable and have function types)

Autumn 2018 CSE341: Programming Languages 21

Example

fun distMoved (f :© {X:real,y:real}->{x:real,y:real},
p - {X:real,y:real}) =
let val p2 : {x:real,y:real} = Tt p
val dx - real = p2.x — p.X
val dy - real = p2.y — p.y
in Math.sgrt(dx*dx + dy*dy) end

fun flip p = {X = ~p-X, y=—p.y}
val d = distMoved(flip, {x=3.0, y=4.0})

No subtyping here yet:
— Fli1p has exactly the type distMoved expects for ¥

— Can pass distMoved a record with extra fields for p,
but that's old news

Autumn 2018 CSE341: Programming Languages 22

Return-type subtyping

fun distMoved (f :© {X:real,y:real}->{x:real,y:real},
p - {X:real,y:real}) =
let val p2 : {x:real,y:real} = Tt p
val dx - real = p2.x — p.X
val dy - real = p2.y — p.y
in Math.sgrt(dx*dx + dy*dy) end

fun flipGreen p = {X = ~p.X, y=~p.y, color="green"}
val d = distMoved(flipGreen, {x=3.0, y=4.0})

 Return type of FlipGreenis {x:real,y:real,color:string},
but distMoved expects a return type of {x:real ,y:real}

 Nothing goes wrong: If ta <: tb,thent->ta <: t->tb
— A function can return “more than it needs to”
— Jargon: “Return types are covariant”

Autumn 2018 CSE341: Programming Languages 23

This Is wrong

fun distMoved (f :© {X:real,y:real}->{x:real,y:real},
p - {X:real,y:real}) =
let val p2 : {x:real,y:real} = Tt p
val dx - real = p2.x — p.X
val dy - real = p2.y — p.y
in Math.sgrt(dx*dx + dy*dy) end

fun fliplfGreen p = 1f p.color = "green" (*kaboom!*)
then {X = ~p.x, y=-p.y}

else {Xx = p.-x, y=p-vy}
val d = distMoved(fliplfGreen, {x=3.0, y=4.0})

 Argument type of FliplfGreenis
{x:real,y:real,color:string}, butitis called with a
{x:real,y:real}

e Unsound! ta <: tbdoes NOT allowta->t <: th->t

Autumn 2018 CSE341: Programming Languages 24

The other way works!

fun distMoved (f :© {X:real,y:real}->{x:real,y:real},
p - {X:real,y:real}) =
let val p2 : {x:real,y:real} = Tt p
val dx - real = p2.x — p.X
val dy - real = p2.y — p.y
in Math.sgrt(dx*dx + dy*dy) end

fun FlipX YO p = {X = ~p.%x, y=0.0}
val d = distMoved(flipX YO, {x=3.0, y=4.0})

o Argument type of Fl1pX _YOis {x:real}, butitis called with a
{x:real,y:real}, whichis fine

e If th <: ta,thenta->t<: th->t
— A function can assume “less than it needs to” about arguments
— Jargon: “Argument types are contravariant”

Autumn 2018 CSE341: Programming Languages 25

Can do both

fun distMoved (f :© {X:real,y:real}->{x:real,y:real},
p - {X:real,y:real}) =
let val p2 : {x:real,y:real} = Tt p
val dx - real = p2.x — p.X
val dy - real = p2.y — p.y
in Math.sgrt(dx*dx + dy*dy) end

fun flipXMakeGreenp = {x=~p.x, y=0.0, color="green"}
val d = distMoved(flipXMakeGreen, {x=3.0, y=4.0})

« TlipXMakeGreen has type
{x:real} -> {Xx:real,y:real,color:string}
* Fine to pass a function of such a type as function of type
{x:real,y:real} -> {x:real,y:real}
e Ift3<: tlandt2<: t4,thentl->t2<: t3->t4

Autumn 2018 CSE341: Programming Languages 26

Conclusion

e fE3 <z tlandt2 <: t4,thentl->1t2 <: t3->t4

Function subtyping contravariant in argument(s) and
covariant in results

» Also essential for understanding subtyping and methods in OOP

* Most unintuitive concept in the course

Smart people often forget and convince themselves
covariant arguments are okay

These people are always mistaken
At times, you or your boss or your friend may do this

Remember: A guy with a PhD in PL jumped up and down
Insisting that function/method subtyping is always
contravariant in its argument -- covariant is unsound

Autumn 2018 CSE341: Programming Languages 27

	CSE341: Programming Languages��Lecture 24�Subtyping
	Last major topic: Subtyping
	A tiny language
	Records (half like ML, half like Java)
	A Basic Type System
	This is safe
	Motivating subtyping
	A good idea: allow extra fields
	Keeping subtyping separate
	Subtyping is not a matter of opinion
	Four good rules
	More record subtyping?
	Do not have this subtyping – could we?
	Stop!
	Mutation strikes again
	Moral of the story
	Picking on Java (and C#)
	Why did they do this?
	So what happens
	null
	Now functions
	Example
	Return-type subtyping
	This is wrong
	The other way works!
	Can do both
	Conclusion

