
CSE341: Programming Languages

Lecture 23
Multiple Inheritance, Mixins, Interfaces,

Abstract Methods

Dan Grossman
Autumn 2018

What next?

Have used classes for OOP's essence: inheritance, overriding,
dynamic dispatch

Now, what if we want to have more than just 1 superclass

• Multiple inheritance: allow > 1 superclasses
– Useful but has some problems (see C++)

• Ruby-style mixins: 1 superclass; > 1 method providers
– Often a fine substitute for multiple inheritance and has fewer

problems (see also Scala traits)

• Java/C#-style interfaces: allow > 1 types
– Mostly irrelevant in a dynamically typed language, but fewer

problems

Autumn 2018 2CSE341: Programming Languages

Multiple Inheritance

• If inheritance and overriding are so useful, why limit ourselves to one
superclass?
– Because the semantics is often awkward (this topic)
– Because it makes static type-checking harder (not discussed)
– Because it makes efficient implementation harder (not discussed)

• Is it useful? Sure!
– Example: Make a ColorPt3D by inheriting from Pt3D and
ColorPt (or maybe just from Color)

– Example: Make a StudentAthlete by inheriting from Student
and Athlete

– With single inheritance, end up copying code or using non-OOP-
style helper methods

Autumn 2018 3CSE341: Programming Languages

Trees, dags, and diamonds

• Note: The phrases subclass, superclass can be ambiguous
– There are immediate subclasses, superclasses
– And there are transitive subclasses, superclasses

• Single inheritance: the class hierarchy is a tree
– Nodes are classes
– Parent is immediate superclass
– Any number of children allowed

• Multiple inheritance: the class hierarchy no longer a tree
– Cycles still disallowed (a directed-acyclic graph)
– If multiple paths show that X is a (transitive) superclass

of Y, then we have diamonds
Autumn 2018 4CSE341: Programming Languages

A

B C D

E

X

Y

V W
Z

What could go wrong?

• If V and Z both define a method m,
what does Y inherit? What does super mean?
– Directed resends useful (e.g., Z::super)

• What if X defines a method m that Z but not V overrides?
– Can handle like previous case, but sometimes undesirable

(e.g., ColorPt3D wants Pt3D's overrides to “win”)

• If X defines fields, should Y have one copy of them (f) or two
(V::f and Z::f)?
– Turns out each behavior can be desirable (next slides)
– So C++ has (at least) two forms of inheritance

Autumn 2018 5CSE341: Programming Languages

X

Y

V W
Z

3DColorPoints
If Ruby had multiple inheritance, we would want ColorPt3D to
inherit methods that share one @x and one @y

Autumn 2018 6CSE341: Programming Languages

class Pt
attr_accessor :x, :y
…

end
class ColorPt < Pt
attr_accessor :color
…

end
class Pt3D < Pt
attr_accessor :z
… # override some methods

end
class ColorPt3D < Pt3D, ColorPt # not Ruby!
end

ArtistCowboys
This code has Person define a pocket for subclasses to use, but
an ArtistCowboy wants two pockets, one for each draw method

Autumn 2018 7CSE341: Programming Languages

class Person
attr_accessor :pocket
…

end
class Artist < Person # pocket for brush objects
def draw # access pocket
…

end
class Cowboy < Person # pocket for gun objects
def draw # access pocket
…

end
class ArtistCowboy < Artist, Cowboy # not Ruby!
end

Mixins

• A mixin is (just) a collection of methods
– Less than a class: no instances of it

• Languages with mixins (e.g., Ruby modules) typically let a class
have one superclass but include any number of mixins

• Semantics: Including a mixin makes its methods part of the class
– Extending or overriding in the order mixins are included in the

class definition
– More powerful than helper methods because mixin methods

can access methods (and instance variables) on self not
defined in the mixin

Autumn 2018 8CSE341: Programming Languages

Example

Autumn 2018 9CSE341: Programming Languages

module Doubler
def double

self + self # assume included in classes w/ +
end

end
class String

include Doubler
end
class AnotherPt

attr_accessor :x, :y
include Doubler
def + other

ans = AnotherPt.new
ans.x = self.x + other.x
ans.y = self.y + other.y
ans

end

Lookup rules

Mixins change our lookup rules slightly:

• When looking for receiver obj's method m, look in obj's class,
then mixins that class includes (later includes shadow), then obj's
superclass, then the superclass' mixins, etc.

• As for instance variables, the mixin methods are included in the
same object
– So usually bad style for mixin methods to use instance

variables since a name clash would be like our CowboyArtist
pocket problem (but sometimes unavoidable?)

Autumn 2018 10CSE341: Programming Languages

The two big ones

The two most popular/useful mixins in Ruby:

• Comparable: Defines <, >, ==, !=, >=, <= in terms of <=>

• Enumerable: Defines many iterators (e.g., map, find) in terms
of each

Great examples of using mixins:
– Classes including them get a bunch of methods for just a

little work
– Classes do not “spend” their “one superclass” for this
– Do not need the complexity of multiple inheritance

• See the code for some examples

Autumn 2018 11CSE341: Programming Languages

Replacement for multiple inheritance?
• A mixin works pretty well for ColorPt3D:

– Color a reasonable mixin except for using an instance variable

• A mixin works awkwardly-at-best for ArtistCowboy:
– Natural for Artist and Cowboy to be Person subclasses
– Could move methods of one to a mixin, but it is odd style and

still does not get you two pockets

Autumn 2018 12CSE341: Programming Languages

module Color
attr_accessor :color

end

module ArtistM …
class Artist < Person

include ArtistM
class ArtistCowboy < Cowboy

include ArtistM

Statically-Typed OOP

• Now contrast multiple inheritance and mixins with Java/C#-style
interfaces

• Important distinction, but interfaces are about static typing,
which Ruby does not have

• So will use Java code after quick introduction to static typing for
class-based OOP…
– Sound typing for OOP prevents “method missing” errors

Autumn 2018 13CSE341: Programming Languages

Classes as Types

• In Java/C#/etc. each class is also a type

• Methods have types for arguments and result

• If C is a (transitive) subclass of D, then C is a subtype of D
– Type-checking allows subtype anywhere supertype allowed
– So can pass instance of C to a method expecting instance of D

Autumn 2018 14CSE341: Programming Languages

class A {
Object m1(Example e, String s) {…}
Integer m2(A foo, Boolean b, Integer i) {…}

}

Interfaces are (or were) JustTypes

• An interface is not a class; it is [er, used to be] only a type
– Does not contain method definitions, only their signatures

(types)
• Unlike mixins
• (Changed in Java 8, makes them more like mixins!)

– Cannot use new on an interface
• Like mixins

Autumn 2018 15CSE341: Programming Languages

interface Example {
void m1(int x, int y);
Object m2(Example x, String y);

}

Implementing Interfaces

• A class can explicitly implement any number of interfaces
– For class to type-check, it must implement every method in

the interface with the right type
• More on allowing subtypes later!

– Multiple interfaces no problem; just implement everything

• If class type-checks, it is a subtype of the interface

Autumn 2018 16CSE341: Programming Languages

class A implements Example {
public void m1(int x, int y) {…}
public Object m2(Example e, String s) {…}

}
class B implements Example {

public void m1(int pizza, int beer) {…}
public Object m2(Example e, String s) {…}

}

Multiple interfaces

• Interfaces provide no methods or fields
– So no questions of method/field duplication when

implementing multiple interfaces, unlike multiple inheritance

• What interfaces are for:
– “Caller can give any instance of any class implementing I”

• So callee can call methods in I regardless of class
– So much more flexible type system

• Interfaces have little use in a dynamically typed language
– Dynamic typing already much more flexible, with trade-offs

we studied

Autumn 2018 17CSE341: Programming Languages

Connections

Let’s now answer these questions:

• What does a statically typed OOP language need to support
“required overriding”?

• How is this similar to higher-order functions?

• Why does a language with multiple inheritance (e.g., C++) not
need Java/C#-style interfaces?

[Explaining Java’s abstract methods / C++’s pure virtual methods]

Autumn 2018 18CSE341: Programming Languages

Required overriding

Often a class expects all subclasses to override some method(s)
– The purpose of the superclass is to abstract common

functionality, but some non-common parts have no default

A Ruby approach:
– Do not define must-override methods in superclass
– Subclasses can add it
– Creating instance of superclass can cause method-missing

errors

Autumn 2018 19CSE341: Programming Languages

do not use A.new
all subclasses should define m2
class A

def m1 v
… self.m2 e …

end
end

Static typing

• In Java/C#/C++, prior approach fails type-checking
– No method m2 defined in superclass
– One solution: provide error-causing implementation

– Better: Use static checking to prevent this error…

Autumn 2018 20CSE341: Programming Languages

class A
def m1 v

… self.m2 e …
end
def m2 v

raise "must be overridden"
end

end

Abstract methods

• Java/C#/C++ let superclass give signature (type) of method
subclasses should provide
– Called abstract methods or pure virtual methods
– Cannot creates instances of classes with such methods

• Catches error at compile-time
• Indicates intent to code-reader
• Does not make language more powerful

Autumn 2018 21CSE341: Programming Languages

abstract class A {
T1 m1(T2 x) { … m2(e); … }
abstract T3 m2(T4 x);

}
class B extends A {

T3 m2(T4 x) { … }
}

Passing code to other code

• Abstract methods and dynamic dispatch: An OOP way to have
subclass “pass code” to other code in superclass

• Higher-order functions: An FP way to have caller “pass code” to
callee

Autumn 2018 22CSE341: Programming Languages

abstract class A {
T1 m1(T2 x) { … m2(e); … }
abstract T3 m2(T4 x);

}
class B extends A {

T3 m2(T4 x) { … }
}

fun f (g,x) = … g e …

fun h x = … f((fn y => …),…)

No interfaces in C++

• If you have multiple inheritance and abstract methods, you do
not also need interfaces

• Replace each interface with a class with all abstract methods

• Replace each “implements interface” with another superclass

So: Expect to see interfaces only in statically typed OOP without
multiple inheritance

– Not Ruby
– Not C++

Autumn 2018 23CSE341: Programming Languages

	CSE341: Programming Languages��Lecture 23�Multiple Inheritance, Mixins, Interfaces, Abstract Methods
	What next?
	Multiple Inheritance
	Trees, dags, and diamonds
	What could go wrong?
	3DColorPoints
	ArtistCowboys
	Mixins
	Example
	Lookup rules
	The two big ones
	Replacement for multiple inheritance?
	Statically-Typed OOP
	Classes as Types
	Interfaces are (or were) JustTypes
	Implementing Interfaces
	Multiple interfaces
	Connections
	Required overriding
	Static typing
	Abstract methods
	Passing code to other code
	No interfaces in C++

