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What next?

Have used classes for OOP's essence: inheritance, overriding, 
dynamic dispatch

Now, what if we want to have more than just 1 superclass

• Multiple inheritance: allow > 1 superclasses
– Useful but has some problems (see C++)

• Ruby-style mixins: 1 superclass; > 1 method providers
– Often a fine substitute for multiple inheritance and has fewer 

problems (see also Scala traits)

• Java/C#-style interfaces: allow > 1 types
– Mostly irrelevant in a dynamically typed language, but fewer 

problems
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Multiple Inheritance

• If inheritance and overriding are so useful, why limit ourselves to one 
superclass?
– Because the semantics is often awkward (this topic)
– Because it makes static type-checking harder (not discussed)
– Because it makes efficient implementation harder (not discussed)

• Is it useful?  Sure!
– Example: Make a ColorPt3D by inheriting from Pt3D and 
ColorPt (or maybe just from Color)

– Example: Make a StudentAthlete by inheriting from Student
and Athlete

– With single inheritance, end up copying code or using non-OOP-
style helper methods
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Trees, dags, and diamonds

• Note: The phrases subclass, superclass can be ambiguous
– There are immediate subclasses, superclasses
– And there are transitive subclasses, superclasses

• Single inheritance: the class hierarchy is a tree
– Nodes are classes
– Parent is immediate superclass
– Any number of children allowed

• Multiple inheritance: the class hierarchy no longer a tree
– Cycles still disallowed (a directed-acyclic graph)
– If multiple paths show that X is a (transitive) superclass      

of Y, then we have diamonds
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What could go wrong?

• If V and Z both define a method m,
what does Y inherit?  What does super mean?
– Directed resends useful (e.g., Z::super)

• What if X defines a method m that Z but not V overrides?
– Can handle like previous case, but sometimes undesirable 

(e.g., ColorPt3D wants Pt3D's overrides to “win”)

• If X defines fields, should Y have one copy of them (f) or two 
(V::f and Z::f)?
– Turns out each behavior can be desirable (next slides)
– So C++ has (at least) two forms of inheritance
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3DColorPoints
If Ruby had multiple inheritance, we would want ColorPt3D to 
inherit methods that share one @x and one @y
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class Pt
attr_accessor :x, :y 
… 

end
class ColorPt < Pt
attr_accessor :color
… 

end
class Pt3D < Pt
attr_accessor :z
… # override some methods

end
class ColorPt3D < Pt3D, ColorPt # not Ruby!
end



ArtistCowboys
This code has Person define a pocket for subclasses to use, but 
an ArtistCowboy wants two pockets, one for each draw method
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class Person
attr_accessor :pocket
… 

end
class Artist < Person # pocket for brush objects
def draw # access pocket
… 

end
class Cowboy < Person # pocket for gun objects
def draw # access pocket
… 

end
class ArtistCowboy < Artist, Cowboy # not Ruby!
end



Mixins

• A mixin is (just) a collection of methods
– Less than a class: no instances of it

• Languages with mixins (e.g., Ruby modules) typically let a class 
have one superclass but include any number of mixins

• Semantics: Including a mixin makes its methods part of the class
– Extending or overriding in the order mixins are included in the 

class definition
– More powerful than helper methods because mixin methods 

can access methods (and instance variables) on self not 
defined in the mixin
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Example
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module Doubler
def double 

self + self # assume included in classes w/ +
end

end
class String

include Doubler
end
class AnotherPt

attr_accessor :x, :y 
include Doubler
def + other

ans = AnotherPt.new
ans.x = self.x + other.x
ans.y = self.y + other.y
ans

end



Lookup rules

Mixins change our lookup rules slightly:

• When looking for receiver obj's method m, look in obj's class, 
then mixins that class includes (later includes shadow), then obj's
superclass, then the superclass' mixins, etc.

• As for instance variables, the mixin methods are included in the 
same object
– So usually bad style for mixin methods to use instance 

variables since a name clash would be like our CowboyArtist
pocket problem (but sometimes unavoidable?)
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The two big ones

The two most popular/useful mixins in Ruby:

• Comparable:  Defines <, >, ==, !=, >=, <= in terms of <=>

• Enumerable:  Defines many iterators (e.g., map, find) in terms 
of each

Great examples of using mixins:
– Classes including them get a bunch of methods for just a 

little work
– Classes do not “spend” their “one superclass” for this
– Do not need the complexity of multiple inheritance

• See the code for some examples
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Replacement for multiple inheritance?
• A mixin works pretty well for ColorPt3D:

– Color a reasonable mixin except for using an instance variable

• A mixin works awkwardly-at-best for ArtistCowboy:
– Natural for Artist and Cowboy to be Person subclasses
– Could move methods of one to a mixin, but it is odd style and 

still does not get you two pockets

Autumn 2018 12CSE341: Programming Languages

module Color
attr_accessor :color 

end

module ArtistM …
class Artist < Person 

include ArtistM
class ArtistCowboy < Cowboy

include ArtistM



Statically-Typed OOP

• Now contrast multiple inheritance and mixins with Java/C#-style 
interfaces

• Important distinction, but interfaces are about static typing, 
which Ruby does not have

• So will use Java code after quick introduction to static typing for 
class-based OOP…
– Sound typing for OOP prevents “method missing” errors
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Classes as Types

• In Java/C#/etc. each class is also a type

• Methods have types for arguments and result

• If C is a (transitive) subclass of D, then C is a subtype of D
– Type-checking allows subtype anywhere supertype allowed
– So can pass instance of C to a method expecting instance of D
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class A {
Object m1(Example e, String s) {…}
Integer m2(A foo, Boolean b, Integer i) {…}

}



Interfaces are (or were) JustTypes

• An interface is not a class; it is [er, used to be] only a type
– Does not contain method definitions, only their signatures

(types)
• Unlike mixins
• (Changed in Java 8, makes them more like mixins!)

– Cannot use new on an interface
• Like mixins
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interface Example {
void   m1(int x, int y);
Object m2(Example x, String y);

}



Implementing Interfaces

• A class can explicitly implement any number of interfaces
– For class to type-check, it must implement every method in 

the interface with the right type
• More on allowing subtypes later!

– Multiple interfaces no problem; just implement everything

• If class type-checks, it is a subtype of the interface

Autumn 2018 16CSE341: Programming Languages

class A implements Example {
public void m1(int x, int y) {…}
public Object m2(Example e, String s) {…}

}
class B implements Example {

public void m1(int pizza, int beer) {…}
public Object m2(Example e, String s) {…}

}



Multiple interfaces

• Interfaces provide no methods or fields
– So no questions of method/field duplication when 

implementing multiple interfaces, unlike multiple inheritance

• What interfaces are for:
– “Caller can give any instance of any class implementing I”

• So callee can call methods in I regardless of class
– So much more flexible type system

• Interfaces have little use in a dynamically typed language
– Dynamic typing already much more flexible, with trade-offs 

we studied
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Connections

Let’s now answer these questions:

• What does a statically typed OOP language need to support 
“required overriding”?

• How is this similar to higher-order functions?

• Why does a language with multiple inheritance (e.g., C++) not 
need Java/C#-style interfaces?

[Explaining Java’s abstract methods / C++’s pure virtual methods]
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Required overriding

Often a class expects all subclasses to override some method(s)
– The purpose of the superclass is to abstract common 

functionality, but some non-common parts have no default

A Ruby approach:
– Do not define must-override methods in superclass
– Subclasses can add it
– Creating instance of superclass can cause method-missing 

errors
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# do not use A.new
# all subclasses should define m2
class A

def m1 v
… self.m2 e …

end
end



Static typing

• In Java/C#/C++, prior approach fails type-checking
– No method m2 defined in superclass
– One solution: provide error-causing implementation

– Better: Use static checking to prevent this error…
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class A
def m1 v

… self.m2 e …
end
def m2 v

raise "must be overridden"
end

end



Abstract methods

• Java/C#/C++ let superclass give signature (type) of method 
subclasses should provide
– Called abstract methods or pure virtual methods
– Cannot creates instances of classes with such methods

• Catches error at compile-time
• Indicates intent to code-reader
• Does not make language more powerful
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abstract class A {
T1 m1(T2 x) { … m2(e); … }
abstract T3 m2(T4 x);

}
class B extends A {

T3 m2(T4 x) { … }
}



Passing code to other code

• Abstract methods and dynamic dispatch: An OOP way to have 
subclass “pass code” to other code in superclass

• Higher-order functions: An FP way to have caller “pass code” to 
callee
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abstract class A {
T1 m1(T2 x) { … m2(e); … }
abstract T3 m2(T4 x);

}
class B extends A {

T3 m2(T4 x) { … }
}

fun f (g,x) = … g e …

fun h x = … f((fn y => …),…)



No interfaces in C++

• If you have multiple inheritance and abstract methods, you do 
not also need interfaces

• Replace each interface with a class with all abstract methods

• Replace each “implements interface” with another superclass

So:  Expect to see interfaces only in statically typed OOP without 
multiple inheritance

– Not Ruby
– Not C++
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