
Name:

CSE341 Autumn 2017, Midterm Examination
October 30, 2017

Please do not turn the page until 2:30.

Rules:

• The exam is closed-book, closed-note, etc. except for one side of one 8.5x11in piece of paper.

• Please stop promptly at 3:20.

• There are 100 points, distributed unevenly among 6 questions (all with multiple parts):

• The exam is printed double-sided.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit. But clearly indicate what
is your final answer.

• The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the
questions.

• If you have questions, ask.

• Relax. You are here to learn.



Name:

1. (20 points) This problem uses this datatype binding, where an exp is a simple arithmetic expression
like we studied in class except instead of negations and multiplications, we have doubling and (integer)
division.

datatype exp = Constant of int

| Double of exp

| Add of exp * exp

| Divide of exp * exp

(a) Write a function eval_exp of type exp -> int that returns the “answer” for “executing” the
arithmetic expression. Some notes on division:

• Use integer division, which in ML is done with the infix operator div. For example, in ML,
6 div 4 is 1.

• Division by zero will raise an exception, which is fine.

(b) Give an example of a value of type exp where:

• Calling eval_exp with your expression causes a division-by-zero exception, but ...

• ... no use of the Divide constructor has Constant 0 as its second argument.

(c) Write a function no_literal_zero_divide of type exp -> bool that returns true if and only if
no use of the Divide constructor has Constant 0 as its second argument. Notes:

• So, no_literal_zero_divide applied to your answer to the previous question would evaluate
to true.

• You should not use eval_exp — this question has nothing to do with evaluating expressions.



Name:

2. (20 points) This problem uses this somewhat silly function:

fun f (xs,ys) =

case (xs,ys) of

(* 1 *) ([],[]) => SOME 0

(* 2 *) | (x::[], y::[]) => SOME (x+y)

(* 3 *) | (x1::x2::[], y1::y2::[]) => SOME (x1 + x2 + y1 + y2)

(* 4 *) | (x1::x2::xs’, y1::y2::ys’) => f (xs’,ys’)

(* 5 *) | _ => NONE

(a) What is the type of f?

(b) What does f([3],[10]) evaluate to?

(c) What does f([3,4],[10,11]) evaluate to?

(d) What does f([3,4,5],[10,11,12]) evaluate to?

(e) What does f([3,4,5,6],[10,11,12,13]) evaluate to?

(f) Describe in at most 1 English sentence all the inputs to f such that the result of f is NONE.

(g) Yes or no: Is f tail-recurisve?

For each of the remaining questions, give one of these answers (just the letter is enough):

A. The result no longer type-checks.

B. The result type-checks but gives different answers for some inputs.

C. The result type-checks and gives the same answer for all inputs.

Also, ignore the syntax detail that the first branch has no | character and the others do — assume
that is fixed appropriately.

(h) What happens if we move branch 2 of f to be the first pattern in the case expression?

(i) What happens if we move branch 3 of f to be the first pattern in the case expression?

(j) What happens if we move branch 4 of f to be the first pattern in the case expression?

(k) What happens if we move branch 5 of f to be the first pattern in the case expression?



Name:

3. (12 points) In this problem, we ask you to give good error messages for why a short ML program
does not type-check. A specific phrase or short sentence is plenty.

For example, for the program,

fun f1 (x,y) = if x then y + 1 else x

a fine answer would be, “the then-branch-expression and the else-branch-expression do not have the
same type.”

Give good error messages for each of the following:

(a) fun f2 g xs =

case xs of

[] => []

| x::xs’ => (g x) :: f2 xs’

(b) fun f3 xs =

case xs of

[] => NONE

| x::[] => SOME 1

| x::xs’ => SOME (1 + (f3 xs’))

(c) datatype t = A of int | B of (int * t) list

fun f4 x =

let

fun aux ys =

case ys of

[] => []

| (i,j)::ys => (i+1,j)::(aux ys)

in

case x of

A i => x

| B ys => B (aux x)

end

(d) exception Foo

fun f5 x = if x > 3 then x else raise Foo

fun f6 y = (f5 (y+1)) handle _ => false



Name:

4. (21 points)

(a) Without using any helper functions (except ::) write a function zipWith of type
(’a * ’b -> ’c) -> ’a list -> ’b list -> ’c list as follows:

• It takes three arguments in curried form.

• The length of the result is the length of the shorter of the second or third argument.

• The ith element of the output is the first argument applied to the ith elements of the second
and third arguments.

(b) Use a val binding and a partial application of zipWith to define a function first_bigger of type
int list -> int list -> bool list where, for example,
first_bigger [1,7,9] [0,10,9,4,2] = [true, false, false]

(c) Here are two ML library functions:

• List.map : (’a -> ’b) -> ’a list -> ’b list

map as discussed in class, with curried arguments

• ListPair.zip : ’a list * ’b list -> (’a * ’b) list

equivalent to zipWith (fn pr => pr) except takes its arguments as a pair

Reimplement zipWith in one line using these two library functions and a fun binding.

(d) How many times does zipWith (fn _ => true) [1,2,3] [7,8,9] call the :: function (so do
not count uses of the :: pattern) if zipWith is your answer to part (a)?

(e) How many times does zipWith (fn _ => true) [1,2,3] [7,8,9] call the :: function (so do
not count uses of the :: pattern) if zipWith is your answer to part (c)?



Name:

5. (8 points) Here is a definition of flat_map as shown in section (recall @ is list append):

fun flat_map f xs =

case xs of

[] => []

| x::xs’ => (f x) @ flat_map f xs’

(a) Reimplement a curried map of type (’a -> ’b) -> ’a list -> ’b list in one line using
a fun binding and flat_map.

(b) Reimplement a curried filter of type (’a -> bool) -> ’a list -> ’a list in one line using
a fun binding and flat_map.



Name:

6. (19 points) This problem considers an ML module RBNum1 for numbers in the range 0–999 that also
have a “color” of blue or red. The structure definition is on a separate page you will not turn in.

(a) Complete this signature definition so that clients of RBNum1 can use all the function bindings in
RBNum1 but are not able to make “bad” values like Red ~7 or Blue 2000.

signature RBNUM =

sig

val max_value : int

exception OutOfRange

end

(b) Complete this structure definition so that it also has signature RBNUM and is equivalent to RBNum1

from any client’s perspective. You need to add four bindings — put them in the left column of
the table below.

structure RBNum2 :> RBNUM =

struct

type t = int

exception OutOfRange

val max_value = 999

fun red_num i = if i > max_value orelse i < 0 then raise OutOfRange else i

fun blue_num i = if i > max_value orelse i < 0 then raise OutOfRange else i+1000

(* ... part (b) ... *)

end

(c) For each of the bindings you added in part (b), what are their types inside the RBNum2 module?
Put your answers in the middle column of the table.

(d) For each of the bindings you added in part (b), is it possible for the client to implement an
equivalent function outside the module? Put your yes/no answers in the right column of the
table.

part (b) part (c) part (d)



Name:

Here is an extra page in case you need it. If you use it for a question, please write “see also extra sheet” or
similar on the page with the question.



Here is RBNum1 on a separate page. Do not turn in this page, so do not write answers on it.

structure RBNum1 :> RBNUM =

struct

val max_value = 999

exception OutOfRange

datatype t = Red of int | Blue of int

fun red_num i = if i > max_value orelse i < 0 then raise OutOfRange else Red i

fun blue_num i = if i > max_value orelse i < 0 then raise OutOfRange else Blue i

fun is_blue x = case x of Red _ => false | Blue _ => true

fun is_red x = case x of Red _ => true | Blue _ => false

fun is_max_blue x = case x of Red _ => false | Blue i => i = 999

fun to_int x = case x of Red i => i | Blue i => i

end


