
CSE 341: Section 9
Tam Dang

University of Washington

November 29, 2018

Outline

Dispatch Overview

Mixins

The Visitor Pattern

Dispatch Overview

Dispatch is the runtime procedure for looking up which function to call
based on the parameters given

Noun Single Dispatch (plural single dispatches)

1. (computing) A dispatch method where the implementation of a
function or method is chosen solely on the type of the instance
calling the method.

• Ruby (and Java) use Single Dispatch on the implicit self
parameter

• Uses runtime class of self to lookup the method when a call is made

• Double Dispatch uses the runtime classes of both self and a
single method parameter

• Ruby / Java do not have this (but we can emulate it)
• You will do this in HW7 (my favorite homework tied with HW5)

Multiple Dispatch (or Multimethods) is the generalization of Double
Dispatch

Dispatch Overview

Dispatch is the runtime procedure for looking up which function to call
based on the parameters given

Noun Single Dispatch (plural single dispatches)

1. (computing) A dispatch method where the implementation of a
function or method is chosen solely on the type of the instance
calling the method.

• Ruby (and Java) use Single Dispatch on the implicit self
parameter

• Uses runtime class of self to lookup the method when a call is made

• Double Dispatch uses the runtime classes of both self and a
single method parameter

• Ruby / Java do not have this (but we can emulate it)
• You will do this in HW7 (my favorite homework tied with HW5)

Multiple Dispatch (or Multimethods) is the generalization of Double
Dispatch

Dispatch Overview

Dispatch is the runtime procedure for looking up which function to call
based on the parameters given

Noun Single Dispatch (plural single dispatches)

1. (computing) A dispatch method where the implementation of a
function or method is chosen solely on the type of the instance
calling the method.

• Ruby (and Java) use Single Dispatch on the implicit self
parameter

• Uses runtime class of self to lookup the method when a call is made

• Double Dispatch uses the runtime classes of both self and a
single method parameter

• Ruby / Java do not have this (but we can emulate it)
• You will do this in HW7 (my favorite homework tied with HW5)

Multiple Dispatch (or Multimethods) is the generalization of Double
Dispatch

Dispatch Overview

Dispatch is the runtime procedure for looking up which function to call
based on the parameters given

Noun Single Dispatch (plural single dispatches)

1. (computing) A dispatch method where the implementation of a
function or method is chosen solely on the type of the instance
calling the method.

• Ruby (and Java) use Single Dispatch on the implicit self
parameter

• Uses runtime class of self to lookup the method when a call is made

• Double Dispatch uses the runtime classes of both self and a
single method parameter

• Ruby / Java do not have this (but we can emulate it)
• You will do this in HW7 (my favorite homework tied with HW5)

Multiple Dispatch (or Multimethods) is the generalization of Double
Dispatch

Dispatch Overview

Dispatch is the runtime procedure for looking up which function to call
based on the parameters given

Noun Single Dispatch (plural single dispatches)

1. (computing) A dispatch method where the implementation of a
function or method is chosen solely on the type of the instance
calling the method.

• Ruby (and Java) use Single Dispatch on the implicit self
parameter

• Uses runtime class of self to lookup the method when a call is made

• Double Dispatch uses the runtime classes of both self and a
single method parameter

• Ruby / Java do not have this (but we can emulate it)
• You will do this in HW7 (my favorite homework tied with HW5)

Multiple Dispatch (or Multimethods) is the generalization of Double
Dispatch

Dispatch Overview
Emulating Double Dispatch

class A

def f x

x.fWithA self

end

def fWithA a

"(a, a) case"

end

def fWithB b

"(b, a) case"

end

end

class B

def f x

x.fWithB self

end

def fWithA a

"(a, b) case"

end

def fWithB b

"(b, b) case"

end

end

Dispatch Overview
Emulating Double Dispatch

Emulating Double Dispatch in Ruby is as simple as using the built-in
Single Dispatch twice

• Have the principal method1 call another method on its first
parameter and pass yourself (i.e. literally self) as an argument

• The method the principal method is calling will implicitly know the
class of the self parameter passed to it
(it was defined to deal with this class)

• By Single Dispatch, the method the principal method is calling will
also know the class of the principal method’s first parameter

1The method being called

Dispatch Overview
Emulating Double Dispatch

Emulating Double Dispatch in Ruby is as simple as using the built-in
Single Dispatch twice

• Have the principal method1 call another method on its first
parameter and pass yourself (i.e. literally self) as an argument

• The method the principal method is calling will implicitly know the
class of the self parameter passed to it
(it was defined to deal with this class)

• By Single Dispatch, the method the principal method is calling will
also know the class of the principal method’s first parameter

1The method being called

Dispatch Overview
Emulating Double Dispatch

Emulating Double Dispatch in Ruby is as simple as using the built-in
Single Dispatch twice

• Have the principal method1 call another method on its first
parameter and pass yourself (i.e. literally self) as an argument

• The method the principal method is calling will implicitly know the
class of the self parameter passed to it
(it was defined to deal with this class)

• By Single Dispatch, the method the principal method is calling will
also know the class of the principal method’s first parameter

1The method being called

Dispatch Overview
Emulating Double Dispatch

Emulating Double Dispatch in Ruby is as simple as using the built-in
Single Dispatch twice

• Have the principal method1 call another method on its first
parameter and pass yourself (i.e. literally self) as an argument

• The method the principal method is calling will implicitly know the
class of the self parameter passed to it
(it was defined to deal with this class)

• By Single Dispatch, the method the principal method is calling will
also know the class of the principal method’s first parameter

1The method being called

Mixins

A mixin is just a collection of methods

• Less than a class (there are no instances of mixins)

Languages with mixins will typically let a class have one superclass, but
any number of mixins it wants to include

When a class includes a mixin, the methods from the mixin are
now part of the class

• Extending or overriding depends on the order in which mixins are
included in the class definition

• Often more powerful than helper methods because mixin methods
have access to self (and instance variables) not defined in the
mixin

Mixins

A mixin is just a collection of methods

• Less than a class (there are no instances of mixins)

Languages with mixins will typically let a class have one superclass, but
any number of mixins it wants to include

When a class includes a mixin, the methods from the mixin are
now part of the class

• Extending or overriding depends on the order in which mixins are
included in the class definition

• Often more powerful than helper methods because mixin methods
have access to self (and instance variables) not defined in the
mixin

Mixins

A mixin is just a collection of methods

• Less than a class (there are no instances of mixins)

Languages with mixins will typically let a class have one superclass, but
any number of mixins it wants to include

When a class includes a mixin, the methods from the mixin are
now part of the class

• Extending or overriding depends on the order in which mixins are
included in the class definition

• Often more powerful than helper methods because mixin methods
have access to self (and instance variables) not defined in the
mixin

Mixins

module Doubler

def double

Assumes this is included in classes with ‘+‘

self + self

end

end

class String

include Doubler

end

class AnotherPt

attr_accessor :x, :y

include Doubler

def + other

ans = AnotherPt.new

ans.x = self.x + other.x

ans.y = self.y + other.y

ans

end

Mixins
Method Lookup Rules

Mixins change our lookup rules slightly

Given an object O that is receiving a message m:

• Look for m in O’s class. If it wasn’t there,

• Look for m in O’s mixins. If it wasn’t there,

• Look for m in O’s superclass. If it wasn’t there,

• Look for m in O’s superclass’ mixins. If it wasn’t there,

• ...

Regarding instance variables, the mixin methods are included in the same
object

• It is bad style for mixin methods to use instance variables since
names can clash

Mixins
Method Lookup Rules

Mixins change our lookup rules slightly

Given an object O that is receiving a message m:

• Look for m in O’s class. If it wasn’t there,

• Look for m in O’s mixins. If it wasn’t there,

• Look for m in O’s superclass. If it wasn’t there,

• Look for m in O’s superclass’ mixins. If it wasn’t there,

• ...

Regarding instance variables, the mixin methods are included in the same
object

• It is bad style for mixin methods to use instance variables since
names can clash

Mixins
Method Lookup Rules

Mixins change our lookup rules slightly

Given an object O that is receiving a message m:

• Look for m in O’s class. If it wasn’t there,

• Look for m in O’s mixins. If it wasn’t there,

• Look for m in O’s superclass. If it wasn’t there,

• Look for m in O’s superclass’ mixins. If it wasn’t there,

• ...

Regarding instance variables, the mixin methods are included in the same
object

• It is bad style for mixin methods to use instance variables since
names can clash

Mixins
Method Lookup Rules

Mixins change our lookup rules slightly

Given an object O that is receiving a message m:

• Look for m in O’s class. If it wasn’t there,

• Look for m in O’s mixins. If it wasn’t there,

• Look for m in O’s superclass. If it wasn’t there,

• Look for m in O’s superclass’ mixins. If it wasn’t there,

• ...

Regarding instance variables, the mixin methods are included in the same
object

• It is bad style for mixin methods to use instance variables since
names can clash

Mixins
Method Lookup Rules

Mixins change our lookup rules slightly

Given an object O that is receiving a message m:

• Look for m in O’s class. If it wasn’t there,

• Look for m in O’s mixins. If it wasn’t there,

• Look for m in O’s superclass. If it wasn’t there,

• Look for m in O’s superclass’ mixins. If it wasn’t there,

• ...

Regarding instance variables, the mixin methods are included in the same
object

• It is bad style for mixin methods to use instance variables since
names can clash

Mixins
Method Lookup Rules

Mixins change our lookup rules slightly

Given an object O that is receiving a message m:

• Look for m in O’s class. If it wasn’t there,

• Look for m in O’s mixins. If it wasn’t there,

• Look for m in O’s superclass. If it wasn’t there,

• Look for m in O’s superclass’ mixins. If it wasn’t there,

• ...

Regarding instance variables, the mixin methods are included in the same
object

• It is bad style for mixin methods to use instance variables since
names can clash

Mixins
The Two Big Ones

Here are two powerful mixins in Ruby

• Comparable — Defines <, >, >=, <=, != in terms of <=>

• http://ruby-doc.org/core-2.2.3/Comparable.html

• Enumerable — Defines many iterators (e.g. map, find) in terms of
each

• http://ruby-doc.org/core-2.2.3/Enumerable.html

http://ruby-doc.org/core-2.2.3/Comparable.html
http://ruby-doc.org/core-2.2.3/Enumerable.html

Mixins
The Two Big Ones

Here are two powerful mixins in Ruby

• Comparable — Defines <, >, >=, <=, != in terms of <=>

• http://ruby-doc.org/core-2.2.3/Comparable.html

• Enumerable — Defines many iterators (e.g. map, find) in terms of
each

• http://ruby-doc.org/core-2.2.3/Enumerable.html

http://ruby-doc.org/core-2.2.3/Comparable.html
http://ruby-doc.org/core-2.2.3/Enumerable.html

The Visitor Pattern

A template for handling a funcctional composition in OOP

• OOP wants code grouped by classes

• We want code grouped by functions

• Grouping by function makes it easier to add functionality later

This pattern relies on Double Dispatch

• Dispatch is based on (<Vistor Type>, <Value Type>) pairs

Heavily used in compilers

• Often used to compute over ASTs (abstract syntax trees)

The Visitor Pattern

A template for handling a funcctional composition in OOP

• OOP wants code grouped by classes

• We want code grouped by functions

• Grouping by function makes it easier to add functionality later

This pattern relies on Double Dispatch

• Dispatch is based on (<Vistor Type>, <Value Type>) pairs

Heavily used in compilers

• Often used to compute over ASTs (abstract syntax trees)

The Visitor Pattern

A template for handling a funcctional composition in OOP

• OOP wants code grouped by classes

• We want code grouped by functions

• Grouping by function makes it easier to add functionality later

This pattern relies on Double Dispatch

• Dispatch is based on (<Vistor Type>, <Value Type>) pairs

Heavily used in compilers

• Often used to compute over ASTs (abstract syntax trees)

The Visitor Pattern

A template for handling a funcctional composition in OOP

• OOP wants code grouped by classes

• We want code grouped by functions

• Grouping by function makes it easier to add functionality later

This pattern relies on Double Dispatch

• Dispatch is based on (<Vistor Type>, <Value Type>) pairs

Heavily used in compilers

• Often used to compute over ASTs (abstract syntax trees)

The Visitor Pattern

A template for handling a funcctional composition in OOP

• OOP wants code grouped by classes

• We want code grouped by functions

• Grouping by function makes it easier to add functionality later

This pattern relies on Double Dispatch

• Dispatch is based on (<Vistor Type>, <Value Type>) pairs

Heavily used in compilers

• Often used to compute over ASTs (abstract syntax trees)

	Dispatch Overview
	Mixins
	The Visitor Pattern

