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Dispatch Overview

Dispatch is the runtime procedure for looking up which function to call
based on the parameters given

Noun Single Dispatch (plural single dispatches)

1. (computing) A dispatch method where the implementation of a
function or method is chosen solely on the type of the instance
calling the method.

• Ruby (and Java) use Single Dispatch on the implicit self
parameter

• Uses runtime class of self to lookup the method when a call is made

• Double Dispatch uses the runtime classes of both self and a
single method parameter

• Ruby / Java do not have this (but we can emulate it)
• You will do this in HW7 (my favorite homework tied with HW5)

Multiple Dispatch (or Multimethods) is the generalization of Double
Dispatch
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Dispatch Overview
Emulating Double Dispatch

class A

def f x

x.fWithA self

end

def fWithA a

"(a, a) case"

end

def fWithB b

"(b, a) case"

end

end

class B

def f x

x.fWithB self

end

def fWithA a

"(a, b) case"

end

def fWithB b

"(b, b) case"

end

end



Dispatch Overview
Emulating Double Dispatch

Emulating Double Dispatch in Ruby is as simple as using the built-in
Single Dispatch twice

• Have the principal method1 call another method on its first
parameter and pass yourself (i.e. literally self) as an argument

• The method the principal method is calling will implicitly know the
class of the self parameter passed to it
(it was defined to deal with this class)

• By Single Dispatch, the method the principal method is calling will
also know the class of the principal method’s first parameter

1The method being called
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Mixins

A mixin is just a collection of methods

• Less than a class (there are no instances of mixins)

Languages with mixins will typically let a class have one superclass, but
any number of mixins it wants to include

When a class includes a mixin, the methods from the mixin are
now part of the class

• Extending or overriding depends on the order in which mixins are
included in the class definition

• Often more powerful than helper methods because mixin methods
have access to self (and instance variables) not defined in the
mixin
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Mixins

module Doubler

def double

# Assumes this is included in classes with ‘+‘

self + self

end

end

class String

include Doubler

end

class AnotherPt

attr_accessor :x, :y

include Doubler

def + other

ans = AnotherPt.new

ans.x = self.x + other.x

ans.y = self.y + other.y

ans

end



Mixins
Method Lookup Rules

Mixins change our lookup rules slightly

Given an object O that is receiving a message m:

• Look for m in O’s class. If it wasn’t there,

• Look for m in O’s mixins. If it wasn’t there,

• Look for m in O’s superclass. If it wasn’t there,

• Look for m in O’s superclass’ mixins. If it wasn’t there,

• ...

Regarding instance variables, the mixin methods are included in the same
object

• It is bad style for mixin methods to use instance variables since
names can clash
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Mixins
The Two Big Ones

Here are two powerful mixins in Ruby

• Comparable — Defines <, >, >=, <=, != in terms of <=>

• http://ruby-doc.org/core-2.2.3/Comparable.html

• Enumerable — Defines many iterators (e.g. map, find) in terms of
each

• http://ruby-doc.org/core-2.2.3/Enumerable.html

http://ruby-doc.org/core-2.2.3/Comparable.html
http://ruby-doc.org/core-2.2.3/Enumerable.html
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The Visitor Pattern

A template for handling a funcctional composition in OOP

• OOP wants code grouped by classes

• We want code grouped by functions

• Grouping by function makes it easier to add functionality later

This pattern relies on Double Dispatch

• Dispatch is based on (<Vistor Type>, <Value Type>) pairs

Heavily used in compilers

• Often used to compute over ASTs (abstract syntax trees)
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