
CSE 341:
Programming Languages

Section AC with Nate Yazdani

agenda
• method dispatch

• mixins

• visitor pattern

method dispatch

what is dispatch
• method dispatch — or just dispatch — is the

protocol to look up the method body for a method
call based on the classes of argument values

• the Ruby and Java languages incorporate single
dispatch on the receiver object, the implicit self
or this parameter
• secretly, class constructors stash references to

their method implementations inside all objects
• single dispatch is what you learned in CSE 143

what is dispatch
• method dispatch — or just dispatch — is the

protocol to look up the method body for a method
call based on the classes of argument values

• the Ruby and Java languages incorporate single
dispatch on the receiver object, the implicit self
or this parameter
• secretly, class constructors stash references to

their method implementations inside all objects
• single dispatch is what you learned in CSE 143

resolution must (usually) happen at runtime

multiple dispatch
• double dispatch is when the look-up protocol uses

both the receiver object and some other parameter
• neither Ruby nor Java have built-in support for

this
• we can emulate it, though, and in fact, we will on

the next homework!

• double dispatch generalizes to using any number
of parameters, and this general concept is multiple
dispatch or multimethods

emulating multimethods
you can emulate multiple dispatch by using single dispatch
once for each parameter for dispatch

strategy: a method m in each class k calls a specialized
method mk on the next parameter for dispatch, passing the
remaining parameters and its own receiver object (e.g., self)

each method in such a sequence (e.g., m, mk, mk,k’, …) knows
the class for one more argument, so the last method will know
the class of every argument

other languages provide different mechanisms to accomplish
the same outcome, like nested case expressions in SML

emulating multimethods
you can emulate multiple dispatch by using single dispatch
once for each parameter for dispatch

strategy: a method m in each class k calls a specialized
method mk on the next parameter for dispatch, passing the
remaining parameters and its own receiver object (e.g., self)

each method in such a sequence (e.g., m, mk, mk,k’, …) knows
the class for one more argument, so the last method will know
the class of every argument

other languages provide different mechanisms to accomplish
the same outcome, like nested case expressions in SML

induction?

quick demo]

example
class A
 def f x
 x.f_A self
 end

 def f_A a
 puts “(A, A)”
 end

 def f_B b
 puts “(B, A)”
 end
end

class B
 def f x
 x.f_B self
 end

 def f_A a
 puts “(A, B)”
 end

 def f_B b
 puts “(B, B)”
 end
end

triple dispatch!
exercise:
extend the previous example to do triple dispatch on
arguments x, y, and z, printing (Cx, Cy, Cz),
where Cx is the class of x, Cy is the class of y, and Cz
is the class of z (either A or B by assumption)

bonus:
can you find a way to achieve the same result using
reflection instead of multiple dispatch?

mixins

mixins
• a mixin is just a collection of methods

• like class, but you can’t instantiate it

• languages with mixins typically allow inheritance from
one superclass and inclusion of any number of mixins
• solves most use cases for multiple inheritance without

all the pain

• including a mixin adds its methods to the class
• prioritized by order of inclusion, so later mixins can

override methods from earlier ones
• mixin methods can access self like any other method

example
module Doubler
 def double
 self + self
 end
end

class String
 include Doubler
end

class Numeric
 include Doubler
end

class Point
 include Doubler
 attr_accessor :x, :y

 def initialize(x=0, y=0)
 @x = x; @y = y
 end

 def + other
 Point.new(self.x + other.x,
 self.y + other.y)
 end
end

quick demo]

mixin method dispatch
• with mixins, need to revise the protocol for method look-up

• to find the right method body for a call o.m, look in the following
places for a method with the name m:

1. the class of o
2. the mixins of the class of o, in order
3. the superclass of o
4. the mixins of the superclass of o, in order
5. …

• instance variables work the same, because mixin and normal
methods can interact with the same object
• however, bad style for mixins to use “private” instance

variables, because their names might conflict with a class’s!

common mixins
• two of the more popular and useful Ruby mixins:

• Comparable, which implements <, >, ==, !=, >=, and
<= in terms of <=>

• Enumerable, which implements iterators like map and
find in terms of each

• these are emblematic of the spirit of mixins
• classes implement simple core functionality (e.g., <=>

and each), and mixins provide convenient
abstractions on top

• classes don’t have to waste their one superclass on
some utility functionality!

visitor pattern

visitor pattern
• the “visitor pattern” is a “design pattern” in object-

oriented programming for functional composition
• in object-oriented programming, code is grouped into

classes
• we sometimes want to group code by their

functionality, to make adding another operation easier
in the future

• the visitor pattern is an application of double dispatch!

• commonly used with abstract syntax trees (a language
implementation’s representation of program syntax)

visitor pattern
• the “visitor pattern” is a “design pattern” in object-

oriented programming for functional composition
• in object-oriented programming, code is grouped into

classes
• we sometimes want to group code by their

functionality, to make adding another operation easier
in the future

• the visitor pattern is an application of double dispatch!

• commonly used with abstract syntax trees (a language
implementation’s representation of program syntax)

spread functionality across operand types

quick demo]

