
CSE 341:
Programming Languages

Section AC with Nate Yazdani

agenda
• guidance for homework 5 (MUPL)

• syntax
• semantics
• evaluation
• syntactic sugar

• more Racket
• eval, quote, and quasiquote
• RackUnit
• variadic procedures
• apply

Change how we do this

• Previous version of eval_exp has type exp -> int

• From now on will write such functions with type exp -> exp

• Why? Because will be interpreting languages with multiple kinds
of results (ints, pairs, functions, …)
– Even though much more complicated for example so far

• How? See the ML code file:
– Base case returns entire expression, e.g., (Const 17)
– Recursive cases:

• Check variant (e.g., make sure a Const)
• Extract data (e.g., the number under the Const)
• Also return an exp (e.g., create a new Const)

New way in Racket

See the Racket code file for coding up the same new kind of “exp
-> exp” interpreter

– Using lists where car of list encodes “what kind of exp”

Key points:
• Define our own constructor, test-variant, extract-data functions

– Just better style than hard-to-read uses of car, cdr
• Same recursive structure without pattern-matching
• With no type system, no notion of “what is an exp” except in

documentation
– But if we use the helper functions correctly, then okay
– Could add more explicit error-checking if desired

syntax of MUPL
• no parsing this time

• already seen enough of that :-)

• MUPL programs are abstract syntax trees (ASTs)
• composed of Racket structs as nodes

• interpreter can assume that the given AST is valid,
i.e., conforms to the specification of MUPL syntax

• however, even a syntactically correct program
could have invalid semantics!

valid syntax
for this abstract syntax :

your interpreter should support valid ASTs, like these:

(struct int (n) #:transparent)
(struct add (e1 e2) #:transparent)
(struct mif (e1 e2 e3) #:transparent)
(struct mtrue () #:transparent)
(struct mfalse () #:transparent)

(int 341)
(add (int 99) (int 1))
(if (mtrue) (int 1) (add (int 10) (int 1)))

n is a Racket integer

each ei is a subexpression

invalid syntax
for this abstract syntax:

your interpreter can ignore invalid ASTs, like these:

(int “dan then dog”)
(mif #t (int 1) (int 0))
(int (add (int 1) (int 0)))

(struct int (n) #:transparent)
(struct add (e1 e2) #:transparent)
(struct mif (e1 e2 e3) #:transparent)
(struct mtrue () #:transparent)
(struct mfalse () #:transparent)can literally crash — that’s totally fine

semantics of MUPL
• a MUPL program (AST) might be syntactically valid, but it

still may not be semantically valid
• for instance, (add (mtrue) (int 0))

• your interpreter should detect these cases and report an
error in terms of the language, not the implementation
• for instance, “error: arguments to add must be int

values”

• your interpreter should ensure that every result from a
recursive call is the sort of MUPL value expected
• if any MUPL value works, then no need to check

• eval-exp should return a MUPL value
• a MUPL value just evaluates to itself
• a MUPL expression (that isn’t a value) evaluates

based on how its MUPL subexpressions evaluate

evaluation of MUPL programs

probably going to need some recursion!

⇓(eval-exp (int 341)) (int 341)

(eval-exp (add (int 99) (int 1))) ⇓ (int 100)

(eval-exp (mif (mtrue)
 (add (int 1) (int 2))
 (mfalse)))

⇓ (int 3)

“left thing computes to right thing”

macros review
• extend language syntax

• expressed in terms of existing syntax

• expanded before the program is evaluated (i.e.,
interpreted or compiled)

“macros” for MUPL
• we’re interpreting MUPL (the object language) inside

of Racket (the metalanguage)

• the syntax of MUPL programs is represented with
Racket structs

• to Racket, a MUPL program is just data

• Why not write Racket functions that return MUPL
ASTs?

“macros” for MUPL
• let’s call this Racket function a MUPL macro:

• now, this MUPL code

• evaluates (in Racket) to this MUPL AST:

(define (++ e) (add (int 1) e))

(add (int 1) (int 101))

(++ (int 101))

quotation
• syntactically, Racket code can be thought of as a

(possibly nested) list of tokens

• for instance, (+ 1 2) is +, then 1, and then 2

• quote-ing a parenthesized expression or prefixing
it with ‘ gives you that list:
(+ 1 2) ; evaluates to 7
(quote (+ 1 2)) ; evaluates to ‘(+ 1 2)
(quote (+ 1 #t)) ; evaluates to ‘(+ 1 #t)
(+ 1 #t) ; error!

quasiquotation
• quasiquote or ` (the backtick) lets you evaluate

part of the syntax with unquote or ,

• more precisely, unquote escapes quasiquote
back to evaluated Racket

• without unquote, quasiquote is equivalent to
plain quote

(quasiquote (unquote (+ 1 2 3))) ; 6
(quasiquote (cse (unquote (+ 3 338)))) ; ‘(cse 341)

self-interpretation
• many languages provide an eval function or

something like it

• evaluates syntax at runtime, possibly with
interpretation or possibly with compilation

• can be useful, but there’s often a better way

• self-interpretation makes reasoning about your
code difficult, both for computers (e.g., analyses)
and for people (e.g., debugging)

self-interpretation
• Racket’s eval works on nested lists of tokens

• quote and quasiquote generate such lists

• eval treats the given list as the syntax of a Racket
program and (tries to) evaluate it

(define quoted
 (quote (+ 1 2 (+ 3 4)))) ; ‘(+ 1 2 (+ 3 4))
(eval quoted) ; 10

RackUnit
• unit testing built into Racket standard library

• http://docs.racket-lang.org/rackunit/

• provides functions to make testing your code
easier: check-eq?, check-true, check-exn,
and many more

http://docs.racket-lang.org/rackunit/
http://docs.racket-lang.org/rackunit/
http://docs.racket-lang.org/rackunit/
http://docs.racket-lang.org/rackunit/
http://docs.racket-lang.org/rackunit/

• “variadic” functions (like +) accept a variable
number of arguments

• you can define your own, if you’d like:

18

(define fn-any
 (lambda xs ; any number of args
 (print xs)))
(define fn-1-or-more
 (lambda (a . xs) ; at least 1 arg
 (begin (print a) (print xs))))
(define fn-2-or-more
 (lambda (a b . xs) ; at least 2 args
 (begin (print a) (print a) (print xs))))

variadic functions

apply applies a list of values as the arguments to
a function in order by position

19

(define fn-any
 (lambda xs ; any number of args
 (print xs)))
(apply fn-any (list 1 2 3 4))

(apply + (list 1 2 3 4)) ; 10
(apply max (list 1 2 3 4)) ; 4

function application

