CSE 341:
Programming Languages

Section AC with Nate Yazdani

recap

e regarding tail recursion, we will specifically state
when you need to use tall recursion for points

* tall recursion is considered good practice in
functional programming, but don't let it bog you
down otherwise

e again, If you're unsure about your coding style,
come to office hours for code review :-)

agenda

tail recursion (review)
anonymous and higher-order functions
mutual recursion

module system (if time)

standard liorary

* online documentation
o http://sml-family.org/Basis/
» http://www.sminj.org/doc/sminj-lib/Manual/toc.html

* most useful parts
o default stuff: hitp://sml-family.org/Basis/top-level-
chapter.ntml
o |ists: http://sml-family.org/Basis/list.html
o |ist pairs: http://sml-family.org/Basis/list-pair.html
» “reals”: http://sml-family.org/Basis/real.html
» strings: http://sml-family.org/Basis/string.html

http://sml-family.org/Basis/
http://www.smlnj.org/doc/smlnj-lib/Manual/toc.html
http://sml-family.org/Basis/top-level-chapter.html
http://sml-family.org/Basis/list.html
http://sml-family.org/Basis/list-pair.html
http://sml-family.org/Basis/real.html
http://sml-family.org/Basis/string.html

tall recursion

 what makes a function tail-recursive”
* |ts recursive calls are in tall position, i.e., tail calls

fun name pat = expr expr handle pat; => expr:

1T expri
then expr; (expri, expr:z)
else exprs;

let val pat; = expri case expro of

‘e pat: => expr;
val pat, = exprn

in exprn+1 end | pat, => exprs

tall position

a (recursive) rule of thumb for tail position:

An subexpression that, if evaluated, becomes the
result of the overall expression, is in tail position.

tall-recursive fibonacci

work together to design an SML function that
computes the nth Fibonacci number (it's a bit tricky!)

£ib(0) =0
fib(1) =1
fib(n) = fib(n-1) + fib(n-2)

tall-recursive fibonacci

fun fib n =
let fun aux k =
if k = 1
then (1, 0)
else let val (b, ¢) = aux (k - 1)
val a = b + c
in (a, b) end
in

if n = 0 then 0 else #1 (aux n)
end

tall-recursive fibonacci

a b C

o

fib(n) = fib(n-1) + fib(n-2)

NN

Jib(n+1) = fib(n) + fib(n-1)

anonymous functions

fn pattern; => expression;
| pattern, => expression;

| pattern, => expression,

* an expression that evaluates to a “tunction value”
without ever binding a name for it

e typically used to create a one-off function to pass to yet
another function like List.map, List.foldl,...

* a function that takes another function as an argument is
called a higher-order function

anonymous functions

fn pattern; => expression;
| pattern, => expression;

| pattern, => expression,

* an expression that evaluates to a “tunction value”
without ever binding a name for it

another function like List.map, List.foldl,...

* a function that takes another function as an argument is
called a higher-order function

anonymous functions

you may hear us call these “lambda functions”

| pattern, => expression;

| pattern, => expression,

* an expression that evaluates to a “tunction value”
without ever binding a name for it

another function like List.map, List.foldl,...

* a function that takes another function as an argument is
called a higher-order function

currying

* two ways to create multi-argument functions
* take a tuple for the only argument
f ¢ t1 *x t, =-> t3
* return a new function to take the next argument
f ¢ t;1 > t, -> t3

* which is better”? depends on what you want
* pro curried: easier to apply partially, e.qg., before
passing to a higher-order function
* pro tupled: easier to apply altogether, e.g., tor
function composition

higher-order functions

please work together to do the following exercises,
using anonymous functions:

1. use map to pair each element with itself
map ?? [0, 1] || [(®, 0), (1, 1)]

2. use List.filter to get the positive integers of list
List.filter 2?22 [0, 2, ~4, 3] | [2, 3]

3. use foldl to average an integer list
foldl ?? 2?2 [2, 4] | 3

higher-order functions

please work together to do the following exercises,
using anonymous functions:

1. uMaCh element with itselt

map ?2? [0, 1] { [(@0, 0), (1, 1)]

. . fax => x> 06 o . .
2. use List. f1 108|t|ve integers of list

List.filter 2?22 [0, 2, ~4, 3] | [2, 3]

3 s F R A

foldl ?? ?? [2, 4] | 3

(0, 0)

higher-order functions

please work together to do the following exercises,
using anonymous functions:

1. uMaCh element with itselt

map ?2? [0, 1] { [(@0, 0), (1, 1)]

. fn x => x > 0 o . .
kinda cheating: still Sl O Jositive Integers of list

ECEVEE 1 ter 2?2 [0, 2, ~4, 3] | [2, 3]

afterwards

3 s F O A

foldl 2?2 22 [2, 4] | 3

(0, 0)

mutual recursion

* what if we need a function f to call g, and a
function g to call f

* this happens more often than you might think!

e asilly example, that sadly doesn’t work :-(

fun even x =

X = 0 orelse not odd (x-1)
fun odd x =

X = 1 orelse not even (x-1)

mutual recursion

* as clever 341 students, we may realize that higher-
order functions offer a work-around

fun even (odd, x) =

X = 0 orelse not odd (even, x-1)
fun odd (even, x) =

X = 1 orelse not even (odd, x-1)

* this doesn't feel like a great solution, though

mutual recursion

* as clever 341 students, we may realize that higher-
order functions offer a work-around

each function passes itself to the other

fun even (odd, x) =

X = 0 orelse not odd (even, x-1)
fun odd (even, x) =

X = 1 orelse not even (odd, x-1)

* this doesn't feel like a great solution, though

mutual recursion

 SML has a special keyword to help us out

fun even Xx

X = 0 orelse not odd (x-1)
and odd x =

X = 1 orelse not even (x-1)

e also works with mutually recursive datatype
bindings

datatype even = Zero | ESucc of odd
and odd = OSucc of even

mutual recursion

 SML has a special keyword to help us out

fun even Xx

X = 0 orelse not odd (x-1)
and odd x =

X = 1 orelse not even (x-1)

e also works with mutually recursive datatype
bindings | fully admit that this is a contrived example :-)

datatype even = Zero | ESucc of odd
and odd = OSucc of even

