
CSE 341:
Programming Languages

Section AC with Nate Yazdani

recap
• regarding tail recursion, we will specifically state

when you need to use tail recursion for points

• tail recursion is considered good practice in
functional programming, but don’t let it bog you
down otherwise

• again, if you’re unsure about your coding style,
come to office hours for code review :-)

agenda
• tail recursion (review)

• anonymous and higher-order functions

• mutual recursion

• module system (if time)

standard library
• online documentation

• http://sml-family.org/Basis/
• http://www.smlnj.org/doc/smlnj-lib/Manual/toc.html

• most useful parts
• default stuff: http://sml-family.org/Basis/top-level-

chapter.html
• lists: http://sml-family.org/Basis/list.html
• list pairs: http://sml-family.org/Basis/list-pair.html
• “reals”: http://sml-family.org/Basis/real.html
• strings: http://sml-family.org/Basis/string.html

http://sml-family.org/Basis/
http://www.smlnj.org/doc/smlnj-lib/Manual/toc.html
http://sml-family.org/Basis/top-level-chapter.html
http://sml-family.org/Basis/list.html
http://sml-family.org/Basis/list-pair.html
http://sml-family.org/Basis/real.html
http://sml-family.org/Basis/string.html

tail recursion
• what makes a function tail-recursive?

• its recursive calls are in tail position, i.e., tail calls
fun name pat = expr

case expr0 of
 pat1 => expr1

...
| patn => exprn

if expr1
then expr2
else expr3

let val pat1 = expr1
 ...

 val patn = exprn
in exprn+1 end

(expr1, expr2)

expr handle pat1 => expr1

tail position

a (recursive) rule of thumb for tail position:

An subexpression that, if evaluated, becomes the
result of the overall expression, is in tail position.

tail-recursive fibonacci

work together to design an SML function that
computes the nth Fibonacci number (it’s a bit tricky!)

fib(0) = 0
fib(1) = 1

fib(n) = fib(n-1) + fib(n-2)

tail-recursive fibonacci
fun fib n =
 let fun aux k =
 if k = 1
 then (1, 0)
 else let val (b, c) = aux (k - 1)
 val a = b + c
 in (a, b) end
 in
 if n = 0 then 0 else #1 (aux n)
 end

tail-recursive fibonacci

fib(n) = fib(n-1) + fib(n-2)

fib(n+1) = fib(n) + fib(n-1)

a b c

anonymous functions

• an expression that evaluates to a “function value”
without ever binding a name for it

• typically used to create a one-off function to pass to yet
another function like List.map, List.foldl,…

• a function that takes another function as an argument is
called a higher-order function

fn pattern1 => expression1
 | pattern2 => expression2

...
 | patternn => expressionn

anonymous functions

• an expression that evaluates to a “function value”
without ever binding a name for it

• typically used to create a one-off function to pass to yet
another function like List.map, List.foldl,…

• a function that takes another function as an argument is
called a higher-order function

fn pattern1 => expression1
 | pattern2 => expression2

...
 | patternn => expressionn

so must be non-recursive

anonymous functions

• an expression that evaluates to a “function value”
without ever binding a name for it

• typically used to create a one-off function to pass to yet
another function like List.map, List.foldl,…

• a function that takes another function as an argument is
called a higher-order function

fn pattern1 => expression1
 | pattern2 => expression2

...
 | patternn => expressionn

so must be non-recursive

you may hear us call these “lambda functions”

currying
• two ways to create multi-argument functions

• take a tuple for the only argument
f : t1 * t2 -> t3

• return a new function to take the next argument
f : t1 -> t2 -> t3

• which is better? depends on what you want
• pro curried: easier to apply partially, e.g., before

passing to a higher-order function
• pro tupled: easier to apply altogether, e.g., for

function composition

higher-order functions
please work together to do the following exercises,

using anonymous functions:

1. use map to pair each element with itself
map ?? [0, 1] ⇓ [(0, 0), (1, 1)]

2. use List.filter to get the positive integers of list
List.filter ?? [0, 2, ~4, 3] ⇓ [2, 3]

3. use foldl to average an integer list
foldl ?? ?? [2, 4] ⇓ 3

higher-order functions
please work together to do the following exercises,

using anonymous functions:

1. use map to pair each element with itself
map ?? [0, 1] ⇓ [(0, 0), (1, 1)]

2. use List.filter to get the positive integers of list
List.filter ?? [0, 2, ~4, 3] ⇓ [2, 3]

3. use foldl to average an integer list
foldl ?? ?? [2, 4] ⇓ 3

fn x => (x, x)

fn x => x > 0

fn (x, (s, n)) => (s + x, n + 1)

(0, 0)

higher-order functions
please work together to do the following exercises,

using anonymous functions:

1. use map to pair each element with itself
map ?? [0, 1] ⇓ [(0, 0), (1, 1)]

2. use List.filter to get the positive integers of list
List.filter ?? [0, 2, ~4, 3] ⇓ [2, 3]

3. use foldl to average an integer list
foldl ?? ?? [2, 4] ⇓ 3

fn x => (x, x)

fn x => x > 0

fn (x, (s, n)) => (s + x, n + 1)

(0, 0)

kinda cheating: still
need to divide

afterwards

mutual recursion
• what if we need a function f to call g, and a

function g to call f

• this happens more often than you might think!

• a silly example, that sadly doesn’t work :-(

fun even x =
 x = 0 orelse not odd (x-1)
fun odd x =
 x = 1 orelse not even (x-1)

mutual recursion
• as clever 341 students, we may realize that higher-

order functions offer a work-around

• this doesn’t feel like a great solution, though

fun even (odd, x) =
 x = 0 orelse not odd (even, x-1)
fun odd (even, x) =
 x = 1 orelse not even (odd, x-1)

mutual recursion
• as clever 341 students, we may realize that higher-

order functions offer a work-around

• this doesn’t feel like a great solution, though

fun even (odd, x) =
 x = 0 orelse not odd (even, x-1)
fun odd (even, x) =
 x = 1 orelse not even (odd, x-1)

each function passes itself to the other

mutual recursion
• SML has a special keyword to help us out

• also works with mutually recursive datatype
bindings

fun even x =
 x = 0 orelse not odd (x-1)
and odd x =
 x = 1 orelse not even (x-1)

datatype even = Zero | ESucc of odd
and odd = OSucc of even

mutual recursion
• SML has a special keyword to help us out

• also works with mutually recursive datatype
bindings

fun even x =
 x = 0 orelse not odd (x-1)
and odd x =
 x = 1 orelse not even (x-1)

datatype even = Zero | ESucc of odd
and odd = OSucc of even

I fully admit that this is a contrived example :-)

