
CSE 341:
Programming Languages

Section AC with Nate Yazdani

recap
• boolean operators

• good style to use andalso, orelse, and not
• syntactic sugar for certain uses of if-then-else

• style grading will be restrained this quarter

(* e1 andalso e2 *)
if e1
then e2
else false

(* e1 orelse e2 *)
if e1
then true
else e2

announcement
• sections have typically been like extra lectures

• today, we’re trying short coding exercises instead
of me live-coding

• hopefully more engaging and useful for you guys

• if not, we’ll switch back next time

questions?

agenda
• type synonyms

• type generality

• equality types

• syntactic sugar

type synonyms
• what is the meaning of int * int * int ?

• literally, a triple of integers
• conceptually, it could be a date, a co-ordinate, or

some other thing

• it’d sure be nice if our code could reflect the
purpose of a type in addition to its “literal meaning”

type date = int * int * int

type vs. datatype
• datatype defines a new type and a name for it

• different from all existing types

• type gives a new name to an “existing” type
• might be built out of smaller types
• still just a name

type card = suit * rank

datatype suit = Club | Diamond | Heart | Spade
datatype rank = Jack | Queen | King | Ace
 | Number of int (* 2-10 *)

type synonyms: why bother?
• really really good for documentation

• for this reason, languages without them often
have popular conventions for variable names

• doesn’t let us do anything we couldn’t do before

• later in the course, we’ll see how they help with
modularity

coding exercise

please work with the people around you to write an
SML function to reverse a string list (without type

annotations)

type generality
• what type did SML give your function?

• probably 'a list -> 'a list

• why not string list -> string list ?

fun rev xs =
 case xs of
 x::xs' => rev(xs’) @ [x]
 | [] => []

fast list reverse
fun rev xs =
 let fun aux (xs, ys) =
 case xs of
 x::xs' => aux(xs', x::ys)
 | [] => ys
 in
 aux(xs, [])
 end

type generality
• the type inferred by SML is more general than the

one that we had in mind

• it works wherever any less general type is expected
• so just as good as these other types:

• but not this one:

'a list -> 'a list

string list -> string list

int list -> int list

string list -> int list

rule for generality

A type t1 is more general than a type t2
if you can substitute the type variables of t1
consistently to get t2.

example of generality
The type

'a list -> 'a list

is more general than the type

int list -> int list

because you can substitute int for 'a

more coding!

please work together again and write a list-contains
function (without type annotations)

…and without the List.exists library function :-)

equality types
• a type variable with double quotes (e.g., ''a) can

only be substituted with an equality type

• an equality type is a type that supports the =
operator, such as int, bool, or string

• function types and real are not equality types

• you can completely ignore warnings about
“calling polyEqual”

syntactic sugar
• under the hood, the if-then-else syntax form is

actually translated into a case statement

• so the andalso and orelse operators are
syntactic sugar for if-then-else, which is syntactic
sugar for a case statement!

• SML is pretty “sweet” like that!

(* if e1 then e2 else e3 *)
case e1 of
 true => e2
| false => e3

…yeah okay that was pretty bad

before you go…

some quick feedback
• did the exercises help at all?

• given what you’ve learned so far, were they…
• too small?
• not enough?
• annoying and/or confusing?
• distracting from the main point?

• any other suggestions for how to make section
work better for you?

thanks!

