CSE 341:
Programming Languages

Section AC with Nate Yazdani

recap

* boolean operators
 good style to use andalso, orelse, and not

* syntactic sugar for certain uses of if-then-else

(* el andalso e2 x) (*x el orelse e2 x)
1f el 1f el

then e2 then true

else false else e2

* style grading will be restrained this quarter

announcement

sections have typically been like extra lectures

today, we're trying short coding exercises instead
of me live-coding

hopefully more engaging and useful for you guys

if not, we'll switch back next time

guestions”

fype synonyms
type generality
equality types

syntactic sugar

agenda

tlype synonyms

 what is the meaning of int * int * int?
 literally, a triple of integers

* conceptually, it could be a date, a co-ordinate, or
some other thing

e |t'd sure be nice If our code could reflect the
purpose of a type in addition to its “literal meaning”

type date = 1nt * int * 1int

type vs. datatype

« datatype defines a new type and a name for it
» different from all existing types

datatype suit = Club | Diamond | Heart | Spade
datatype rank = Jack | Queen | King | Ace
| Number of int (*x 2-10 x*)

e type gives a new name to an “existing” type

* might be built out of smaller types
e still just a name

type card = suit * rank

type synonyms: why bother?

* really really good for documentation
* for this reason, languages without them often
have popular conventions for variable names

* doesn't let us do anything we couldn't do before

* |ater in the course, we'll see how they help with
modularity

coding exercise

please work with the people around you to write an
SML function to reverse a string list (without type
annotations)

type generality

* what type did SML give your function?
e probably 'a 1list -> 'a list

e why not string list -> string list?

fun rev xs =
case xs of
X:sexs' => rev(xs?’) @ [x]

| [1] => [1]

fast list reverse

fun rev xs =
let fun aux (xs, ys) =
case xs of
X:exs' => aux(xs', x::ys)
| [] => ys
in
aux(xs, [])
end

type generality

the type inferred by SML is more general than the
one that we had in mind

'a list -> 'a list
it works wherever any less general type is expected
SO |ust as good as these other types:

string list -> string list
int list -> int list
but not this one:
string list -> int list

rule for generality

A type t1 1S more general than a type 1
If you can substitute the type variables of t;
consistently to get f.

example of generality

The type

'a list -> 'a list

IS more general than the type
int list -> int list

because you can substitute int for 'a

more coding!

please work together again and write a list-contains
function (without type annotations)

...and without the List.exists library function :-)

equality types

e atype variable with double quotes (e.g., ' 'a) can
only be substituted with an equality type

* an equality type Is a type that supports the =
operator, such as int, bool, or string

e function types and rea'l are not equality types

+ you can completely ignore warnings about
“calling polyEqual”

syntactic sugar

e under the hood, the If-then-else syntax form is
actually translated into a case statement

(* 1f el then e2 else e3 *)
case el of

true => e2
| false => e3

 so0the andalso and orelse operators are
syntactic sugar for if-then-else, which is syntactic
sugar for a case statement!

* SML iS pretty “S\Neet” |ke thatl ...yeah okay that was pretty bad

pbefore you go...

some qguick feedback

e did the exercises help at all”

* given what you've learned so far, were they...
* too small?
* not enough?
* annoying and/or confusing?
e distracting from the main point?

* any other suggestions for how to make section
work better for you?

thanks!

