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TODAY’S AGENDA

 HW1 Reminders/Tips

 Type Synonyms

 Type Generality

 Equality Types

 More Syntactic Sugar



HW1 REMINDERS

• Don’t use pattern-matching! (just for the hw)

• If you want to introduce a new variable in your 
function, use a let expression. (Good for 
avoided repeated calculations).

• Test your code & include ‘tests’ in submission

• Tests can just be calling functions on different 
inputs, and manually inspecting the output 
(put ‘tests’) in hw1_test.sml

• What to test? “Some, one, none”



TYPE SYNONYMS
 What does int * int * int represent?

 In HW1 we’re calling it a date

 Wouldn’t it be nice to reflect this representation in 
the source code itself?

type date = int * int * int



TYPE VS. DATATYPE

datatype introduces a new type name, 
distinct from all existing types

type is just another name

datatype suit = Club | Diamond | Heart | Spade
datatype rank = Jack | Queen | King | Ace 

  | Num of int

type card = suit * rank



TYPE SYNONYMS

Why? 

• For now, just for convenience

• It doesn’t let us do anything new

• Easier to read code

Later in the course we will see another use 
related to modularity.



TYPE GENERALITY

Let's write a function that appends two string lists…



TYPE GENERALITY

 We would expect

string list * string list -> string list

‘a list * ‘a list -> ‘a list

• But the type checker found

• Why is this OK?



MORE GENERAL TYPES
 The type

‘a list * ‘a list -> ‘a list

string list * string list -> string list

 is more general than the type

 and “can be used” as any less general type, such as

int list * int list -> int list



MORE GENERAL TYPES
 The type

‘a list * ‘a list -> ‘a list

is not more general than the type

int list * string list -> int list

Takeaway: More general types “can be 
used” as any less general type.



THE TYPE GENERALITY 
RULE

The “more general” rule

A type t1 is more general than the type 
t2 if you can take t1, replace its type 
variables consistently, and get t2



EQUALITY TYPES

Let's write a list containment 
function…



EQUALITY TYPES

 The double quoted variable arises from 
use of the 
= operator
 We can use = on most types like int, bool, 
string, tuples (that contain only “equality 
types”)

 Functions and real are not ”equality types”

 Generality rules work the same, except 
substitution must be some type which 
can be compared with =



SYNTACTIC SUGAR

 If-then-else is implemented as 
syntactic sugar for a case 
statement.



PATTERN-MATCHING 
EXERCISE

Let's write a function using pattern-
matching that acts like an if-expression 
returning something of type int. 
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