
CSE 341
SECTION 2

Miranda Edwards
Winter 2017

Adapted from slides by Nicholas Shahan, Patrick Larson, and Dan Grossman

TODAY’S AGENDA

 HW1 Reminders/Tips

 Type Synonyms

 Type Generality

 Equality Types

 More Syntactic Sugar

HW1 REMINDERS

• Don’t use pattern-matching! (just for the hw)

• If you want to introduce a new variable in your
function, use a let expression. (Good for
avoided repeated calculations).

• Test your code & include ‘tests’ in submission

• Tests can just be calling functions on different
inputs, and manually inspecting the output
(put ‘tests’) in hw1_test.sml

• What to test? “Some, one, none”

TYPE SYNONYMS
 What does int * int * int represent?

 In HW1 we’re calling it a date

 Wouldn’t it be nice to reflect this representation in
the source code itself?

type date = int * int * int

TYPE VS. DATATYPE

datatype introduces a new type name,
distinct from all existing types

type is just another name

datatype suit = Club | Diamond | Heart | Spade
datatype rank = Jack | Queen | King | Ace

 | Num of int

type card = suit * rank

TYPE SYNONYMS

Why?

• For now, just for convenience

• It doesn’t let us do anything new

• Easier to read code

Later in the course we will see another use
related to modularity.

TYPE GENERALITY

Let's write a function that appends two string lists…

TYPE GENERALITY

 We would expect

string list * string list -> string list

‘a list * ‘a list -> ‘a list

• But the type checker found

• Why is this OK?

MORE GENERAL TYPES
 The type

‘a list * ‘a list -> ‘a list

string list * string list -> string list

 is more general than the type

 and “can be used” as any less general type, such as

int list * int list -> int list

MORE GENERAL TYPES
 The type

‘a list * ‘a list -> ‘a list

is not more general than the type

int list * string list -> int list

Takeaway: More general types “can be
used” as any less general type.

THE TYPE GENERALITY
RULE

The “more general” rule

A type t1 is more general than the type
t2 if you can take t1, replace its type
variables consistently, and get t2

EQUALITY TYPES

Let's write a list containment
function…

EQUALITY TYPES

 The double quoted variable arises from
use of the
= operator
 We can use = on most types like int, bool,
string, tuples (that contain only “equality
types”)

 Functions and real are not ”equality types”

 Generality rules work the same, except
substitution must be some type which
can be compared with =

SYNTACTIC SUGAR

 If-then-else is implemented as
syntactic sugar for a case
statement.

PATTERN-MATCHING
EXERCISE

Let's write a function using pattern-
matching that acts like an if-expression
returning something of type int.

	Slide 1
	Today’s Agenda
	HW1 Reminders
	Type Synonyms
	type vs. datatype
	Type Synonyms
	Type Generality
	Type Generality
	More General Types
	More General Types
	The Type Generality Rule
	Equality Types
	Equality Types
	Syntactic Sugar
	Pattern-matching Exercise

