
CSE 341: 
Programming Languages

Section AC with Nate Yazdani



about me
• CSE BS/MS student (last year of BS) 

• I am really into programming languages 

• I am really into research on programming 
languages 
• program synthesis 
• formal verification 
• crazy theoretical stuff (“homotopy type theory??”)



about you?



why are we here
• to get a bit more interactive learning 

• to supplement the material from lecture 

• to take a closer look at important but subtle details 

• to ask questions (please)! :-)



agenda
• ML development workflow 

• emacs 
• using use 
• REPL 

• some more ML 
• variable shadowing 
• debugging with the REPL 
• boolean operations 
• comparison operations



emacs
• recommended (not required) editor for this course 

• a powerful tool for programming 

• learning curve may seem steep, but you get the 
hang of it more quickly than you’d think 

• Dan’s emacs guide is super helpful 

• if you need help with setup, please let us know



emacs demo time



using use

• parses the local file foo.sml and then evaluates 
the bindings one after another 

• result is the dummy value () 
• automatically bound to variable it 
• completely safe to ignore

use “foo.sml”;



the REPL
• stands for the “read-eval[uate]-print-loop” 

• it reads, evaluates, prints, and loops! 

• works with both expressions and bindings 
• expects semicolons to know when to evaluate 

• handy to quickly try stuff out 
• in emacs, start with C-c C-s and end with C-d 

• as we will see in a bit, use-ing multiple files without 
restarting your REPL session is dangerous



shadowing

• eager” evaluation of expressions in variable bindings 
• computes the value and then binds the name to that value 
• afterwards, the original expression is forgotten 

• multiple variable bindings to the same variable name is called “shadowing” 
• affects both static and dynamic environments 
• ML will use the most-recently bound value in the current environment 

• remember: there is no variable “assignment” in ML 
• you can only shadow it in a later environment 
• once bound, a variable’s value is an immutable constant

val a = 1; (* a -> 1 *) 
val b = a * 10; (* a -> 1, b -> 10 *) 
val a = 42; (* a -> 1, b -> 10, a -> 42 *)



avoid shadowing
• it can confuse yourself and (especially) others 

• it’s often considered poor style 

• why? shadowing variables in a REPL session may 
• make wrong code seem correct 
• make correct code seem wrong 
• this can easily happen when you re-use a file



using a shadowed variable
• is it ever possible to use a shadowed variable? 

• yes! 
• and also no… 

• when the shadowing binding of a variable name 
goes out of scope, the shadowed binding is 
available again 
• environments are like a “lookup stack”

val x = “Hello World”; 
fun plus1 (x : int) = x + 1; 
val y = plus1 2; 
val z = x ^ “!!”; (* …, z -> “Hello World!!” *)



be careful with use
• warning: variable shadowing makes it dangerous to call 
use multiple times without restarting the REPL session 

• it might be safe to call use more than once in the same 
REPL session, but think twice about it 
• at the beginning of a session, loading distinct files 

with distinct variable names is probably fine 
• while the behavior of use is well-defined, even experts 

can easily get confused 

• best to always restart the REPL session



debugging errors
• your mistake could be 

• syntactic: the source code means nothing (not in the ML 
grammar) or something unintended 

• typing: the code fails to typecheck 

• semantic (evaluation): the program’s behavior is not what you 
want, e.g., raises an exception, computes the wrong value, or 
loops infinitely 

• keep these straight when debugging 
• sometimes one kind of mistake will appear to be another

val 0 = x

3 + true

val three = 2 + 2



play around
• best way to learn something: try lots of things and 

don’t be afraid of errors 

• work on developing resilience to mistakes 
• slow down 
• don’t panic 
• read what you wrote very carefully 
• reconsider what assumptions you’re making 

• maybe it will help to see me make some mistakes?



let’s give it a try



boolean operations

• not is essentially just a pre-defined function 
• andalso and orelse must be built in, because they 

“short-circuit” and may not always evaluate e2 
• be careful to not use and instead of andalso 

• they mean totally different things

operation syntax type-checking semantics 
(evaluation)

conjunction e1 andalso e2 e1 and e2 must 
have type bool

same as && in 
Java

disjunction e1 orelse e2 e1 and e2 must 
have type bool

same as || in 
Java

negation not e e must have type 
bool

same as !e in 
Java



booleans with style
• ML does not “need” andalso, orelse, or not 

• more concise forms are generally better style 
• definitely please don’t do this

(* just say e (!!!)” *) 
if e then true else false

(* e1 andalso e2 *) 
if e1 
then e2 
else false

(* e1 orelse e2 *) 
if e1 
then true 
else e2



comparisons
• you can compare two int values with 

=  <>  >  <  >=  <= 
• you might get weird errors messages because 

these operators work with some other types too 

• > < >= <= also work with two real values but not 
with one int and one real 

• = <> work with any two values of the same 
“equality type” but not with real 
• we’ll hear more about equality types later



thanks!


