CSE 341:
Programming Languages

Section AC with Nate Yazdani

apout me

» CSE BS/MS student (last year of BS)
* | am really into programming languages

* | am really into research on programming
languages
* program synthesis
* formal verification
* crazy theoretical stuff ("homotopy type theory??”)

a3 PLSE

about you"

Wwhny are we here

to get a bit more interactive learning
to supplement the material from lecture
to take a closer look at important but subtle detalls

to ask questions (please)! :-)

agenda

ML development workflow
* emacs
* USINQ use
e REPL

e some more ML
e variable shadowing
e debugging with the REPL
* boolean operations
e comparison operations

EIMacCsS

recommended (not required) editor for this course
a powerful tool for programming

learning curve may seem steep, but you get the
hang of it more quickly than you'd think

Dan’s emacs guide is super helpful

if you need help with setup, please let us know

emacs demo time

Using use

use “foo.sml”;

parses the local file foo.sml and then evaluates
the bindings one after another

result is the dummy value ()
* automatically bound to variable 1t
 completely safe to ignore

the REPL

stands for the “read-evalluate]-print-loop”
* |t reads, evaluates, prints, and loops!

works with both expressions and bindings
* expects semicolons to know when to evaluate

handy to quickly try stuff out
* In emacs, start with C-c C-s and end with C-d

as we will see in a bit, use-ing multiple tiles without
restarting your REPL session IS dangerous

shadowing

val a = 1; (x a —-> 1 %)
val b =a *x 105 (*x a -> 1, b -> 10 %)
val a = 42; (* , b -> 10, a -> 42 x)

e eager” evaluation of expressions in variable bindings
e computes the value and then binds the name to that value
e afterwards, the original expression is forgotten

e multiple variable bindings to the same variable name is called “shadowing”
e affects both static and dynamic environments
ML will use the most-recently bound value in the current environment

 remember: there is no variable "assignment” in ML
e you can only shadow it in a later environment
e once bound, a variable’s value is an immutable constant

avold shadowing

* |t can confuse yourselt and (especially) others

* |t's often considered poor style

* why? shadowing variables in a REPL session may
* make wrong code seem correct
* make correct code seem wrong
* this can easily happen when you re-use a file

Using a shadowed variapble

* |S it ever possible to use a shadowed variable?
* ves!
* and also no...

* when the shadowing binding of a variable name
goes out of scope, the shadowed binding is
available again
e environments are like a “lookup stack™

val x = “Hello World”;

fun plusl (x : int) = x + 1;

val y = plusl 2;

val z = x M «11?”s (% .., z => “Hello World!!” x)

be careful with use

e warning: variable shadowing makes it dangerous to call
use multiple times without restarting the REPL session

* it might be safe to call use more than once in the same
REPL session, but think twice about it

e at the beginning of a session, loading distinct files
with distinct variable names is probably fine

e while the behavior of use is well-defined, even experts
can easily get confused

* best to always restart the REPL session

debugging errors

e your mistake could be

e syntactic: the source code means nothing (not in the ML
grammar) or something unintended

val 0 = Xx
e typing: the code fails to typecheck

3 + true

e semantic (evaluation): the program’s behavior is not what you

want, e.qg., raises an exception, computes the wrong value, or
loops infinitely

val three = 2 + 2

» keep these straight when debugging
e sometimes one kind of mistake will appear to be another

play arouno

* pbest way to learn something: try lots of things and
don’t be afraid of errors

* work on developing resilience to mistakes
* slow down
 don't panic
* read what you wrote very carefully
* reconsider what assumptions you're making

 maybe it will help to see me make some mistakes?

let's give it atry

pOOlean operations

semantics

operation syntax type-checking (evaluation)

same as && in

conjunction el andalso e2 el and e2 must

have type boo'l Java
disjunction el orelse e2 &% e e must same s ||| in
have type boo'l Java
L
negation ot e e must have type same as !ein
bool Java

 not is essentially just a pre-defined function

« andalso and orelse must be built in, because they
“short-circuit” and may not always evaluate e2

* pbe careful to not use and instead of andalso
* they mean totally different things

pbooleans with style

e ML does not 'need” andalso, orelse, or not

(* el andalso e2 x) (x el orelse e2 x)
if el if el

then e2 then true

else false else e2

* more concise forms are generally better style
e definitely please don't do this

(* just say e (!!!1)” x)
if e then true else false

comparisons

you can compare two int values with

= <> > < >= (=
you might get weird errors messages because
these operators work with some other types too

> < >= <= glso work with two real values but not
with one int and one real

= <> work with any two values of the same
“equality type” but not with real
 we'll hear more about equality types later

thanks!

