
CSE 341 AB
Programming Languages

Section 1
!5 January 2017!

Adapted from slides by Konstantin Weitz, Nicholas Shahan, and Dan Grossman

Hello, it's me Ryan
4th year math undergraduate

Grew up in La Conner, Pennsylvania, and
Olympia

I do research with James. We verify
distributed systems.

I like cooking, going for walks, and listening to
computer music (check out http://vapor.cab/)

http://vapor.cab/

Logistics
Join the AB group on Piazza!

I am almost always on Slack in #341-17wi.

My office hours are Wednesdays at 5pm in
CSE 218, or by appointment (email me).

I will be at a conference the week after
next, so there probably won't be office
hours. We'll get someone to cover section.

Come"to"office"hours"

Attend lecture and section too.

You don't need a list of specific
technical questions lined up before you
decide to stop by 218.

I'm happy to chat about high-level
concerns and questions—you just have
to bring them to office hours!

Today
SML workflow
1. The REPL
2. Debugging errors
3. Emacs demo
ML details
1. Variable shadowing
2. How to use use
3. Boolean operators

What's the REPL do?
1. Read: ask the user for semicolon-

terminated input.
2. Evaluate: try to run the input as ML

code.
3. Print: show the user the result or

any error messages produced by
evaluation.

4. Loop.

Shadowing of variable bindings
val a = 1; (* a -> 1 *)  
val b = a; (* a -> 1, b -> 1 *)  
val a = 2; (* a -> 2, b -> 1 *)

Expressions in bindings are evaluated eagerly.
• Before the variable binding "finishes"
• Afterwards, the expression producing the value is irrelevant

Shadowing (using the same name for multiple variable bindings) is
allowed.
• When looking up a variable, ML will use the latest binding in the

current environment.

Remember: there's no way to "assign" to a variable in ML.
• Can only shadow them in a later environment.
• After binding, the variable's value is an immutable constant.

Try to avoid shadowing
val x = "Hello World";  
val x = 2; (* type error? *)  
val res = x * 2 (* 4, or a type error? *)

Shadowing can be confusing and is usually
considered poor style.

Reintroducing variable bindings in the same REPL
session may...
• make it seem like wrong code is correct; or
• make it seem like correct code is wrong.

Using a shadowed variable

Is it ever possible to use a shadowed
variable again? Well, yes and no.

You recover a shadowed binding if the
more recent binding goes out of scope:

val x = "Hello World";  
fun add1(x : int) = x + 1; (* shadow x *)  
val y = add1 2;
val z = x^"!!"; (* "Hello World!!" *)

Use use wisely
use "code.sml"; feeds the contents of
code.sml directly into the REPL.

Previous uses of use on the same file will haunt
your REPL session with stale bindings.
• Restart the REPL when you want to reload a file!

Using use on two different files with shared
variable names will cause undesired shadowing.
• Work with one file at a time unless you know their

top-level bindings don't overlap!

Demo!

Booleans
operation syntax typing rules evaluation rules

andalso e1 andalso e2 e1 and e2 must
have type bool

same as Java's
e1 && e2

orelse e1 orelse e2 e1 and e2 must
have type bool

same as Java's
e1 || e2

not not e e must have type
bool same as Java's !e

• not is just a pre-defined function, but andalso and orelse
are built into the language. They can't* be implemented as
functions in ML because they "short-circuit" evaluation.

• Be careful to use andalso rather than and, which is something
completely different. We will bring up and later in the course.

Style with booleans
* Okay, we can implement andalso and orelse in ML, but we have to
do so in terms of another "short-circuiting" construct. I said this in class, but it's not
actually true: if we defined orelse (e1, e2) as a function in terms of the if expression below and invoked it,
SML would still evaluate e1 and e2 because of its call-by-value semantics: arguments are always completely
evaluated before the body of the function is evaluated.

(* e1 andalso e2 *)  
if e1  
then e2  
else false

If you find yourself writing code that looks like the above, just use the
appropriate operator instead. It's Good Style™.

And please don't do this:

(* just say e (!!!) *)  
if e then true else false

Comparisons
For comparing int values:

Order comparisons (< <= > >=) may also be
used with two real operands, but do not
support comparing int values to real values.

Equality comparisons (= <>) can be used in any
"equality type" but not with real. We'll cover
equality types later in the course.

= <> > < >= <=

