
CSE 341: Programming Languages

Section 1

Miranda Edwards

Thanks to Dan Grossman, Josiah Adams, and Cody A. Schroeder for the majority of this content

Hi, I’m Miranda

• I’m a senior in CS

• I was born and raised in Washington

• I’m a boxer, fought on UW’s team

• I run cross-country

• I think PL is pretty cool

Today’s Agenda

• Why Study PL?
• ML Development Workflow

– Emacs
– Using use
– The REPL (Read–Eval–Print Loop)

• More ML
– Shadowing Variables
– Debugging Tips
– Boolean Operations
– Comparison Operations

3

Why study programming languages?

• Gets you out of OO-land

• Helps you pick the right language (tool) for a given task

• It’s (maybe) fun

4

Emacs Demo

• Recommended (not required) editor for this course

• Powerful, but the learning curve can at first be intimidating

• Not as scary as it looks

• Helpful Resource: CSE341 Emacs Guide

5

http://courses.cs.washington.edu/courses/cse341/16sp/sml_emacs.pdf

Important Emacs Commands

• C-x C-s - Save
• C-x C-c - Close
• M-w - Copy the highlighted text
• C-y – Paste
• C-shift- - (“ctrl-shift-dash”) - Undo

Note: M (Meta) is most likely the (Non-Mac) alt key, or (Mac) the
flowery button or the option key.

6

Using use

• Enters bindings from the file foo.sml
– Like typing the variable bindings one at a time in sequential

order into the REPL (more on this in a moment)

• Result is () bound to variable it
– Ignorable

7

use "foo.sml";

The REPL

• Read-Eval-Print-Loop is well named

• Conveniently run programs
– Useful to quickly try something out
– Save code for reuse by moving it into a persistent .sml file

• Expects semicolons

• For reasons discussed later, it’s dangerous to reuse use without
restarting the REPL session

8

Debugging Errors

Your mistake could be:

• Syntax: What you wrote means nothing or not the construct you
intended

• Type-checking: What you wrote does not type-check

• Evaluation: It runs but produces wrong answer, or an exception,
or an infinite loop

Keep these straight when debugging even if sometimes one kind of
mistake appears to be another

9

Play around

Best way to learn something: Try lots of things and don’t be afraid
of errors

Work on developing resilience to mistakes
– Slow down
– Don’t panic
– Read what you wrote very carefully

Maybe watching me make a few mistakes will help…

10

Shadowing of Variable Bindings
val a = 1; (* a -> 1 *)
val b = a; (* a -> 1, b -> 1 *)
val a = 2; (* a -> 2, b -> 1 *)

11

1. Expressions in variable bindings are evaluated “eagerly”
– Before the variable binding “finishes”
– Afterwards, the expression producing the value is irrelevant

2. Multiple variable bindings to the same variable name, or
“shadowing”, is allowed
– When looking up a variable, ML uses the latest binding by that

name in the current environment

3. Remember, there is no way to “assign to” a variable in ML
– Can only shadow it in a later environment
– After binding, a variable’s value is an immutable constant

Try to Avoid Shadowing

12

• Shadowing can be confusing and is often poor style

• Why? Reintroducing variable bindings in the same REPL session
may..
– make it seem like wrong code is correct; or
– make it seem like correct code is wrong.

val x = "Hello World";
val x = 2; (* is this a type error? *)
val res = x * 2; (* is this 4 or a type error? *)

Using a Shadowed Variable

• Is it ever possible to use a shadowed variable? Yes! And no…
• It can be possible to uncover a shadowed variable when the

latest binding goes out of scope

13

val x = "Hello World";
fun add1(x : int) = x + 1; (* shadow x in func body *)
val y = add1 2;
val z = x^"!!"; (* "Hello World!!" *)

Use use Wisely

• Warning: Variable shadowing makes it dangerous to call use
more than once without restarting the REPL session.

• It may be fine to repeatedly call use in the same REPL
session, but unless you know what you’re doing, be safe!
– Ex: loading multiple distinct files (with independent variable

bindings) at the beginning of a session
– use’s behavior is well-defined, but even expert

programmers can get confused

• Restart your REPL session before repeated calls to use

14

Boolean Operations

• not is just a pre-defined function, but andalso and orelse must
be built-in operations since they cannot be implemented as a
function in ML.
– Why? Because andalso and orelse “short-circuit” their

evaluation and may not evaluate both e1 and e2.

• Be careful to always use andalso instead of and.
• and is completely different. We will get back to it later.

15

Operation Syntax Type-checking Evaluation

andalso e1 andalso e2 e1 and e2 must have type
bool

Same as Java’s
e1 && e2

orelse e1 orelse e2 e1 and e2 must have type
bool

Same as Java’s
e1 || e2

not not e1 e1 must have type bool Same as Java’s
!e1

Style with Booleans

Language does not need andalso , orelse , or not

Using more concise forms generally much better style

And definitely please do not do this:

16

(* e1 andalso e2 *)
if e1
then e2
else false

(* e1 orelse e2 *)
if e1
then true
else e2

(* just say e (!!!) *)
if e
then true
else false

(* not e1 *)
if e1
then false
else true

Comparisons

For comparing int values:

= <> > < >= <=

You might see weird error messages because comparators can be
used with some other types too:

• > < >= <= can be used with real, but not 1 int and 1 real

• = <> can be used with any “equality type” but not with real
– Let’s not discuss equality types yet

17

	Slide 1
	Hi, I’m Miranda
	Today’s Agenda
	Why study programming languages?
	Emacs Demo
	Important Emacs Commands
	Using use
	The REPL
	Debugging Errors
	Play around
	Shadowing of Variable Bindings
	Try to Avoid Shadowing
	Using a Shadowed Variable
	Use use Wisely
	Boolean Operations
	Style with Booleans
	Comparisons

