
CSE341: Programming Languages

Lecture 27ish
Course Victory Lap

James Wilcox
Winter 2017

Administrivia

• IP2 is out as of this morning; due in a week

• Intention is to focus primarily on material since the midterm
– More fun to show you new stuff than ask you about old stuff
– But will still test your understanding of old stuff “on the way”

• You will need to write code and English

• Please do course evals

Winter 2017 2CSE341: Programming Languages

Victory Lap

A victory lap is an extra trip
around the track

– By the exhausted victors (us) J

Review course goals
– Slides from Introduction and Course-Motivation

Some big themes and perspectives
– Stuff for five years from now more than for IP2

Winter 2017 3CSE341: Programming Languages

Thank you!

• Huge thank-you to your TAs
– Great team effort
– Deep understanding of material despite all having different

341 instructors
– Put up with me
– Great sections, timely grading, etc., etc.

Winter 2017 4CSE341: Programming Languages

Thank you!

• And a huge thank you to all of you
– Great attitude about a very different view of software
– Good questions
– Put up with me
– Occasionally laughed at stuff J

• Computer science ought to be challenging and fun!

Winter 2017 5CSE341: Programming Languages

[From Lecture 1]

• Many essential concepts relevant in any programming language
– And how these pieces fit together

• Use ML, Racket, and Ruby languages:
– They let many of the concepts “shine”
– Using multiple languages shows how the same concept can

“look different” or actually be slightly different
– In many ways simpler than Java

• Big focus on functional programming
– Not using mutation (assignment statements) (!)
– Using first-class functions (can’t explain that yet)
– But many other topics too

Winter 2017 6CSE341: Programming Languages

[From Lecture 1] Why learn this?

Winter 2017 7CSE341: Programming Languages

To free our minds from the shackles
of imperative programming.

[From Course Motivation]
• No such thing as a “best” PL

• Fundamental concepts easier to teach in some (multiple) PLs

• A good PL is a relevant, elegant interface for writing software
– There is no substitute for precise understanding of PL semantics

• Functional languages have been on the leading edge for decades
– Ideas have been absorbed by the mainstream, but very slowly
– First-class functions and avoiding mutation increasingly essential
– Meanwhile, use the ideas to be a better C/Java/PHP hacker

• Many great alternatives to ML, Racket, and Ruby, but each was
chosen for a reason and for how they complement each other

Winter 2017 8CSE341: Programming Languages

[From Course Motivation]
SML, Racket, and Ruby are a useful combination for us

dynamically typed statically typed
functional Racket SML
object-oriented Ruby Java

ML: polymorphic types, pattern-matching, abstract types & modules
Racket: dynamic typing, “good” macros, minimalist syntax, eval
Ruby: classes but not types, very OOP, mixins

[and much more]

Really wish we had more time:
Haskell: laziness, purity, type classes, monads
Prolog: unification and backtracking
[and much more]

Winter 2017 9CSE341: Programming Languages

Benefits of No Mutation

[An incomplete list]

1. Can freely alias or copy values/objects: Unit 1

2. More functions/modules are equivalent: Unit 4

3. No need to make local copies of data: Unit 5

4. Depth subtyping is sound: Unit 8

State updates are appropriate when you are modeling a
phenomenon that is inherently state-based

– A fold over a collection (e.g., summing a list) is not!
Winter 2017 10CSE341: Programming Languages

Some other highlights

• Function closures are really powerful and convenient…
– … and implementing them is not magic

• Datatypes and pattern-matching are really convenient…
– … and exactly the opposite of OOP decomposition

• Sound static typing prevents certain errors…
– … and is inherently approximate

• Subtyping and generics allow different kinds of code reuse…
– … and combine synergistically

• Modularity is really important; languages can help

Winter 2017 11CSE341: Programming Languages

Where to go from here

• Consider taking further PL courses
– 401, 505, 507, …

• Consider picking up a cool new language on your own
– Haskell, Rust, Agda, ...

• Understand an X by building your own X
– PL, OS, website, app, ...

• Consider getting involved in research

• Consider going to grad school

Winter 2017 12CSE341: Programming Languages

The End

I’ve really enjoyed teaching this course (learning some of it as I go!)

J
Don’t be a stranger!

Winter 2017 13CSE341: Programming Languages

