
CSE 341, Winter 2017, Homework 3 – Pattern Matching

You will define several SML functions. Many will be very short because they will use other higher-order
functions. You may use functions in ML’s library.

Download hw3-patterns.sml from the course website.

The first two problems involve writing functions over lists that will be useful in later problems.

1. Write a function first_answer of type (’a -> ’b option) -> ’a list -> ’b (notice the 2 argu-
ments are curried). The first argument should be applied to elements of the second argument in order
until the first time it returns SOME v for some v and then v is the result of the call to first_answer.
If the first argument returns NONE for all list elements, then first_answer should raise the exception
NoAnswer. Hints: Sample solution is 5 lines and does nothing fancy.

2. Write a function all_answers of type (’a -> ’b list option) -> ’a list -> ’b list option

(notice the 2 arguments are curried). The first argument should be applied to elements of the second
argument. If it returns NONE for any element, then the result for all_answers is NONE. Else the
calls to the first argument will have produced SOME lst1, SOME lst2, ... SOME lstn and the result of
all_answers is SOME lst where lst is lst1, lst2, ..., lstn appended together (order doesn’t matter).
Hints: The sample solution is 8 lines. It uses a helper function with an accumulator and uses @. Note
all_answers f [] should evaluate to SOME [].

The remaining problems use these type definitions, which are inspired by the type definitions an ML imple-
mentation would use to implement pattern matching:

datatype pattern = WildcardP | VariableP of string | UnitP | ConstantP of int

| ConstructorP of string * pattern | TupleP of pattern list

datatype valu = Constant of int | Unit | Constructor of string * valu | Tuple of valu list

Given valu v and pattern p, either pmatches v or not. If it does, the match produces a list of string * valu

pairs; order in the list does not matter. The rules for matching should be unsurprising:

• WildcardP matches everything and produces the empty list of bindings.

• VariableP s matches any value v and produces the one-element list holding (s,v).

• UnitP matches only Unit and produces the empty list of bindings.

• ConstantP 17 matches only Constant 17 and produces the empty list of bindings (and similarly for
other integers).

• ConstructorP(s1,p) matches Constructor(s2,v) if s1 and s2 are the same string (you can compare
them with =) and p matches v. The list of bindings produced is the list from the nested pattern match.
We call the strings s1 and s2 the constructor name.

• TupleP ps matches a value of the form Tuple vs if ps and vs have the same length and for all i, the
ith element of ps matches the ith element of vs. The list of bindings produced is all the lists from the
nested pattern matches appended together.

• Nothing else matches.

3. Write a function check_pat that takes a pattern and returns true if and only if all the variables
appearing in the pattern are distinct from each other (i.e., use different strings). The constructor
names are not relevant. Hints: The sample solution uses two helper functions. The first takes a

1

pattern and returns a list of all the strings it uses for variables. Using foldl with a function that uses
@ is useful in one case. The second takes a list of strings and decides if it has repeats. List.exists may
be useful. Sample solution is 15 lines. These are hints: We are not requiring foldl and List.exists

here, but they make it easier.

4. Write a function match that takes a valu * pattern and returns a (string * valu) list option,
namely NONE if the pattern does not match and SOME lst where lst is the list of bindings if it does.
Note that if the value matches but the pattern has no patterns of the form Variable s, then the result
is SOME []. Hints: Sample solution has one case expression with 7 branches. The branch for tuples
uses all_answers and ListPair.zip. Sample solution is 13 lines. Remember to look above for the
rules for what patterns match what values, and what bindings they produce. These are hints: We are
not requiring all_answers and ListPair.zip here, but they make it easier.

5. Write a function first_match that takes a value and a list of patterns and returns a
(string * valu) list option, namely NONE if no pattern in the list matches or SOME lst where
lst is the list of bindings for the first pattern in the list that matches. Use first_answer and a
handle-expression. Hints: Sample solution is 3 lines.

Type Summary: Evaluating a correct homework solution should generate these bindings, in addition to
the bindings for datatype and exception definitions:

val first_answer = fn : (’a -> ’b option) -> ’a list -> ’b

val all_answers = fn : (’a -> ’b list option) -> ’a list -> ’b list option

val check_pat = fn : pattern -> bool

val match = fn : valu * pattern -> (string * valu) list option

val first_match = fn : valu -> pattern list -> (string * valu) list option

Of course, generating these bindings does not guarantee that your solutions are correct. Test your functions.

(Challenge Problem) Write a function typecheck_patterns that “type-checks” a pattern list. Types
for our made-up pattern language are defined by:

datatype typ = AnythingT (* any type of value is okay *)

| UnitT (* type for Unit *)

| IntT (* type for integers *)

| TupleT of typ list (* tuple types *)

| DatatypeT of string (* some named datatype *)

typecheck_patterns should have type ((string * string * typ) list) * (pattern list) -> typ option.
The first argument contains elements that look like ("foo","bar",IntT), which means constructor foo

makes a value of type Datatype "bar" given a value of type IntT. Assume list elements all have different
first fields (the constructor name), but there are probably elements with the same second field (the datatype
name). Under the assumptions this list provides, you “type-check” the pattern list to see if there exists
some typ (call it t) that all the patterns in the list can have. If so, return SOME t, else return NONE.

You must return the “most lenient” type that all the patterns can have. For example, given patterns
TupleP [VariableP "x", VariableP "y"] and TupleP [WildcardP, WildcardP], return
SOME (TupleT [AnythingT, AnythingT]) even though they could both have type TupleT [IntT, IntT].
As another example, if the only patterns are TupleP [WildcardP, WildcardP] and
TupleP [WildcardP, TupleP [WildcardP, WildcardP]], you must return
SOME (TupleT [AnythingT, TupleT[AnythingT, AnythingT]]).

2

