
CSE 341: Section 6
Spring 2017

Nick Mooney

Agenda

• Memoization
• Motivation
• A quick detour…
• Better fibonacci

• Streams
• A quick refresher on thunks
• Infinite lists!

Memoization

• Why is the following “natural” implementation of the Fibonacci
sequence slow?

• Tons of repeated work!

• In fact, execution time grows with respect to

(define (fibonacci x)
 (if (or (= x 1) (= x 2))
 1
 (+ (fibonacci (- x 1))
 (fibonacci (- x 2)))))

Memoization

Motivation
Remember the results of calls the first time we evaluate them, so we

don’t have to redo any work

A quick detour…

• An “associative list” is a list of pairs that you can think of as key/value
pairs

• assoc is part of the standard library

(define my-list (list (cons 1 2) (cons 3 4) (cons 5 6) (cons "example" #t)))

(assoc 1 my-list) ; ‘(1 . 2)
(assoc 3 my-list) ; ‘(3 . 4)
(assoc “example” my-list) ; ‘(”example” . #t)

How can we improve on Fibonacci?

Memoization Recap

• Take a problem that involves lots of repeated work
• Add the ability to “remember” results
• Maybe using an associative list, maybe some other way

• Now we only do the repeated work once, and we can look it up after
that

Streams

• A stream is basically an infinitely long list, with the added bonus that
it doesn’t take an infinite amount of time to construct
• Good for us
• I’m gonna show you an infinite list
• I want to go home later
• You probably need to eat

A stream is a thunk that, when
evaluated, produces a pair
whose first element is an

element of the stream, and
whose second element is the
stream that will produce the

rest of the elements.

The Simplest Stream

(define (ones) (cons 1 ones))

More complex behavior

• Instead of returning the same function each time, let’s return a new
function, which will produce the next value/function pair, etc…

Some slightly more complex examples

