CSE 341: Programming Languages

Section 1

Spencer Pearson

(Thu 9:30-10:30, CSE 220)

Thanks to Dan Grossman, Konstantin Weitz, Josiah Adams, and Cody A. Schroeder for the majority of this content

Today’s Agenda

ML Development Workflow
— The REPL (Read—-Eval—-Print Loop)
— Emacs
— Using use

« More ML
— Shadowing Variables
— Debugging
—Comparison Operations
— Boolean Operations
— Testing

The REPL

 Read-Eval-Print-Loop is well named

» Useful for quickly trying things out
(but save code for reuse by putting it in a .sml file)

» Expects semicolons

(P.S.: r1lwrap might be useful.)

Emacs Demo

« Recommended (not required) editor for this course

« Powerful, but the learning curve can at first be intimidating

Using use

use "foo.sml";

« Enters bindings from the file foo.sml

— Like typing the variable bindings one at a time in sequential
order into the REPL (more on this in a moment)

« Resultis () bound to variable it
— Ignorable

* It's dangerous to reuse use without restarting the REPL
session! Definitions linger.

Debugging Errors

Your mistake could be:

« Syntax: What you wrote means nothing or not the construct you
intended

« Type-checking: What you wrote does not type-check

« Evaluation: It runs but produces wrong answer, or an exception,
or an infinite loop

Work on developing resilience to mistakes:
—Slow down
—Don’t panic
—Read what you wrote very carefully
—Preventative medicine: testing!

Shadowing of Variable Bindings
val a =1; (* a -> 1 *)

val b a; (*a->1, b -> 1 *)

val a 2; (*a->2, b ->1 %)

1. Expressions in variable bindings are evaluated “eagerly”
— Before the variable binding “finishes”
— Afterwards, the expression producing the value is irrelevant

1. Multiple variable bindings to the same variable name, or
“shadowing”, is allowed but discouraged

— When looking up a variable, ML uses the latest binding by that
name in the current environment

1. Remember, there is no way to “assign to” a variable in ML
— Can only shadow it in a later environment
— After binding, a variable’s value is an immutable constant

Try to Avoid Shadowing

val x = "Hello World";
val x = 2; (* is this a type error? ¥*)
val res = x * 2; (* is this 4 or a type error? ¥*)

« Shadowing can be confusing and is often poor style

 Why? Reintroducing variable bindings in the same REPL session
may..
— make it seem like wrong code is correct; or
— make it seem like correct code is wrong.

Using a Shadowed Variable

* Is it ever possible to use a shadowed variable? Yes! And no...

» |t can be possible to uncover a shadowed variable when the
latest binding goes out of scope

val threshold = 10;
(* threshold -> 10 ¥*)

fun is big(x : int) = x > threshold;

(* threshold -> 10, is _big -> (function) *)
val threshold = 20;

(* threshold -> 20, is big -> (function) *)
val z = is big 15;

Use use Wisely

« Warning: Variable shadowing makes it dangerous to call use
more than once without restarting the REPL session.

It may be fine to repeatedly call use in the same REPL
session, but unless you know what you’re doing, be safe!

— Ex: loading multiple distinct files (with independent variable
bindings) at the beginning of a session

— use’s behavior is well-defined, but even expert
programmers can get confused

 Restart your REPL session before repeated calls to use

10

Comparisons

For comparing int values:
= <> > < >= <=

You might see weird error messages because comparators can be
used with some other types too:

e > < >= <= canh be used with real, butnot1 int and 1 real

« = <> can be used with any “equality type” but not with real
— Let’s not discuss equality types yet

11

Boolean Operations

Operation

andalso

Syntax

el andalso e2

Type-checking

el and e2 must have type
bool

Evaluation

Same as Java’s
el && e2

orelse el orelse e2 el and e2 must have type | Same as Java’s
bool el || e2
not not el el must have type bool Same as Java’s

lel

« not is just a pre-defined function, but andalso and orelse must
be built-in operations since they cannot be implemented as a
function in ML.

— Why?

may not evaluate both el and e2.

 Be careful to always use andalso instead of and.
- and Is different. We will get back to it later.

andalso and orelse “short-circuit” their evaluation and

12

Testing

Write tests for your code!

val testl
val test2 =

(abs 2
(abs O

2) ;
0);

