
CSE 341: Programming Langs

Section 1
Justin Harjanto

Hi! I’m Justin ^_^

Senior in CS

Love PL!!!

Huge Haskell fan

Third time TAing for 341

Vim!

Today

Motivation for this course

SML workflow, errors, and booleans

What’s so exciting about this class and why should I care?

Functional programming!

Completely different style from what you’re probably used to

No loops, only recursion, no mutation etc...

Concise code!!!

Lot of features present in other languages

May never write a line of the langs we cover again

But features from FP languages have seeped into “mainstream” languages

Will highlight

What does this do?

let f = filterM $ const [True, False]

Java solution:

public static <T> Set<Set<T>> powerSet(Set<T> originalSet) {

Set<Set<T>> sets = new HashSet<Set<T>>();
if (originalSet.isEmpty()) {

sets.add(new HashSet<T>());
return sets;

}
List<T> list = new ArrayList<T>(originalSet);
T head = list.get(0);
Set<T> rest = new HashSet<T>(list.subList(1, list.size()));
for (Set<T> set : powerSet(rest)) {

Set<T> newSet = new HashSet<T>();
newSet.add(head);
newSet.addAll(set);
sets.add(newSet);
sets.add(set);

}
return sets;

}

Using use

• Enters bindings from the file foo.sml
• Like typing the variable bindings one at a time in

sequential order into the REPL (more on this in a
moment)

• Result is () bound to variable it
• Ignorable

use "foo.sml";

The REPL
• Read-Eval-Print-Loop is well named

• Conveniently run programs: C-c C-s
• Useful to quickly try something out

• Save code for reuse by moving it into a persistent .sml
file

• Expects semicolons

• For reasons discussed later, it’s dangerous to reuse
use without restarting the REPL session
• End the REPL session with C-d

Shadowing of Variable Bindings
val a = 1; (* a -> 1 *)

val b = a * 10; (* a -> 1, b -> 10 *)

val a = 2; (* a -> 2, b -> 10 *)

• Expressions in variable bindings are evaluated “eagerly”

– Before the variable binding “finishes”

– Afterwards, the expression producing the value is irrelevant

• Multiple variable bindings to the same variable name, or “shadowing”, is allowed

– When looking up a variable, ML uses the most recent binding by that name in the current
environment

• Remember, there is no way to “assign to” a variable in ML

– Can only shadow it in a later environment

– After binding, a variable’s value is an immutable constant

Try to Avoid Shadowing

• Shadowing can be confusing and is often poor style

• Why? Reintroducing variable bindings in the same
REPL session may..
• make it seem like wrong code is correct; or

• make it seem like correct code is wrong.

val x = "Hello World";

val x = 2; (* is this a type error? *)

val res = x * 2; (* is this 4 or a type error? *)

Using a Shadowed Variable

• Is it ever possible to use a shadowed variable? Yes!
And no…

• It can be possible to uncover a shadowed variable
when the latest binding goes out of scope

val x = "Hello World";

fun add1(x : int) = x + 1; (* shadow x in func body *)

val y = add1 2;

val z = x ^ "!!"; (* "Hello World!!" *)

Use use Wisely
• Warning: Variable shadowing makes it dangerous to call use more than once without restarting the

REPL session.

• It may be fine to repeatedly call use in the same REPL session, but unless you know what you’re
doing, be safe!

• Ex: loading multiple distinct files (with independent variable bindings) at the beginning of a
session

• The behavior of use is well-defined, but even expert programmers can get confused

• Restart your REPL session before repeated calls to use

Debugging Errors
Your mistake could be:

• Syntax: What you wrote means nothing or not the construct you intended

• Type-checking: What you wrote does not type-check

• Evaluation: It runs but produces wrong answer, or an exception, or an
infinite loop

Keep these straight when debugging even if sometimes one kind of mistake
appears to be another

Play Around
Best way to learn something: Try lots of things and don’t be afraid of errors

Work on developing resilience to mistakes

• Slow down

• Don’t panic

• Read what you wrote very carefully

Maybe watching me make a few mistakes will help…

Boolean Operations

• not is just a pre-defined function, but andalso and orelse must be built-in operations since they cannot be
implemented as a function in ML.

• Why? Because andalso and orelse “short-circuit” their evaluation and may not evaluate both e1 and e2.

• Be careful to always use andalso instead of and.

• and is completely different. We will get back to it later.

Operation Syntax Type-checking Evaluation

andalso e1 andalso e2 e1 and e2 must have type bool Same as Java’s
e1 && e2

orelse e1 orelse e2 e1 and e2 must have type bool Same as Java’s
e1 || e2

not not e1 e1 must have type bool Same as Java’s
!e1

Style with Booleans
Language does not need andalso , orelse , or not

(* e1 andalso e2 *)

if e1

then e2

else false

(* e1 orelse e2 *)

if e1

then true

else e2

(* just say e (!!!) *)

if e

then true

else false

(* not e1 *)

if e1

then false

else true

Comparisons
For comparing int values:

= <> > < >= <=

You might see weird error messages because comparators can be used with some other types too:

• > < >= <= can be used with real, but not a mixture of 1 int and 1 real

• = <> can be used with any “equality type” but not with real

• Let’s not discuss equality types yet

