CSE341: Programming Languages

Lecture 25
Subtyping for OOP;
Comparing/Combining Generics and Subtyping

Dan Grossman
Spring 2017
Now…

Use what we learned about subtyping for records and functions to understand subtyping for class-based OOP
 – Like in Java/C#

Recall:
 – Class names are also types
 – Subclasses are also subtypes
 – Substitution principle: Instance of subclass should usable in place of instance of superclass
An object is…

- Objects: mostly records holding fields and methods
 - Fields are mutable
 - Methods are immutable functions that also have access to `self`

- So could design a type system using types very much like record types
 - Subtypes could have extra fields and methods
 - Overriding methods could have contravariant arguments and covariant results compared to method overridden
 - Sound only because method “slots” are immutable!
Actual Java/C#...

Compare/contrast to what our "theory" allows:

1. Types are class names and subtyping are explicit subclasses
2. A subclass can add fields and methods
3. A subclass can override a method with a covariant return type
 - (No contravariant arguments; instead makes it a non-overriding method of the same name)

(1) Is a subset of what is sound (so also sound)
(3) Is a subset of what is sound and a different choice (adding method instead of overriding)
Classes vs. Types

• A class defines an object's behavior
 – Subclassing inherits behavior and changes it via extension and overriding

• A type describes an object's methods' argument/result types
 – A subtype is substitutable in terms of its field/method types

• These are separate concepts: try to use the terms correctly
 – Java/C# confuse them by requiring subclasses to be subtypes
 – A class name is both a class and a type
 – Confusion is convenient in practice
Optional: More details

Java and C# are sound: They do not allow subtypes to do things that would lead to “method missing” or accessing a field at the wrong type

Confusing (?) Java example:
- Subclass can declare field name already declared by superclass
- Two classes can use any two types for the field name
- Instance of subclass have two fields with same name
- “Which field is in scope” depends on which class defined the method
self/this is special

- Recall our Racket encoding of OOP-style
 - “Objects” have a list of fields and a list of functions that take self as an explicit extra argument
- So if self/this is a function argument, is it contravariant?
 - No, it is covariant: a method in a subclass can use fields and methods only available in the subclass: essential for OOP

```java
class A {
    int m(){ return 0; }
}
class B extends A {
    int x;
    int m(){ return x; }
}
```
- Sound because calls always use the “whole object” for self
- This is why coding up your own objects manually works much less well in a statically typed languages
What are generics good for?

Some good uses for parametric polymorphism:

• Types for functions that combine other functions:

```plaintext
fun compose (g,h) = fn x => g (h x)
(* compose : ('b -> 'c) * ('a -> 'b) -> ('a -> 'c) *)
```

• Types for functions that operate over generic collections

```plaintext
val length : 'a list -> int
val map : ('a -> 'b) -> 'a list -> 'b list
val swap : ('a * 'b) -> ('b * 'a)
```

• Many other idioms

• General point: When types can “be anything” but multiple things need to be “the same type”
Generics in Java

• Java generics a bit clumsier syntactically and semantically, but can express the same ideas
 – Without closures, often need to use (one-method) objects
 – See also earlier optional lecture on closures in Java/C
• Simple example without higher-order functions (optional):

```java
class Pair<T1,T2> {
    T1 x;
    T2 y;
    Pair(T1 _x, T2 _y){ x = _x; y = _y; }
    Pair<T2,T1> swap() {
        return new Pair<T2,T1>(y,x);
    }
    ...
}
```
Subtyping is not good for this

- Using subtyping for containers is much more painful for clients
 - Have to **downcast** items retrieved from containers
 - Downcasting has run-time cost
 - Downcasting can fail: no static check that container holds the type of data you expect
 - (Only gets more painful with higher-order functions like `map`)

```java
class LamePair {
    Object x;
    Object y;
    LamePair(Object _x, Object _y) { x=_x; y=_y; }
    LamePair swap() { return new LamePair(y,x); }
}

// error caught only at run-time:
String s = (String)(new LamePair("hi",4).y);
```
What is subtyping good for?

Some good uses for subtype polymorphism:

- Code that “needs a Foo” but fine to have “more than a Foo”
- Geometry on points works fine for colored points
- GUI widgets specialize the basic idea of “being on the screen” and “responding to user actions”
Awkward in ML

ML does not have subtyping, so this simply does not type-check:

\[
(* \{x: \text{real}, y: \text{real}\} \rightarrow \text{real} *)
\]

\[
\text{fun distToOrigin } (\{x=x,y=y\}) = \text{Math.sqrt}(x^2 + y^2)
\]

\[
\text{val five} = \text{distToOrigin } \{x=3.0,y=4.0,\text{color}="\text{red}"\}
\]

Cumbersome workaround: have caller pass in getter functions:

\[
(* ('a \rightarrow \text{real}) \times ('a \rightarrow \text{real}) \times 'a \rightarrow \text{real} *)
\]

\[
\text{fun distToOrigin } (\text{getx}, \text{gety}, v) = \text{Math.sqrt}((\text{getx } v)*(\text{getx } v) + (\text{gety } v)*(\text{gety } v))
\]

– And clients still need different getters for points, color-points
Wanting both

• Could a language have generics and subtyping?
 – Sure!

• More interestingly, want to combine them
 – “Any type T1 that is a subtype of T2”
 – Called bounded polymorphism
 – Lets you do things naturally you cannot do with generics or subtyping separately
Example

Method that takes a list of points and a circle (center point, radius)
 – Return new list of points in argument list that lie within circle

Basic method signature:

```
List<Point> inCircle(List<Point> pts, Point center, double r) { ... }
```

Java implementation straightforward assuming `Point` has a `distance` method:

```
List<Point> result = new ArrayList<Point>();
for(Point pt : pts)
    if(pt.distance(center) < r)
        result.add(pt);
return result;
```
Subtyping?

List<Point> `inCircle` (List<Point> `pts`, Point `center`, double `r`) { ... }

- Would like to use `inCircle` by passing a `List<ColorPoint>` and getting back a `List<ColorPoint>`

- Java rightly disallows this: While `inCircle` would “do nothing wrong” its type does not prevent:
 - Returning a list that has a non-color-point in it
 - Modifying `pts` by adding non-color-points to it
Generics?

We could change the method to be

```
<T> List<T> inCircle(List<T> pts,
       Point center,
       double r) { ... }
```

- Now the type system allows passing in a `List<Point>` to get a `List<Point>` returned or a `List<ColorPoint>` to get a `List<ColorPoint>` returned
- But cannot implement `inCircle` properly: method body should have no knowledge of type `T`
Bounds

• What we want:

\[
<T> \text{ List}<T> \text{ inCircle}(\text{List}<T> \text{ pts}, \\
 \text{Point} \text{ center}, \\
 \text{double} \text{ r}) \text{ where } T <: \text{ Point} \\
\{ \text{ ... } \}
\]

• Caller uses it generically, but must instantiate \(T\) with some subtype of \text{Point} (including \text{Point})
• Callee can assume \(T <: \text{ Point}\) so it can do its job
• Callee must return a \text{List}<T> so output will contain only elements from \text{pts}
Real Java

• The actual Java syntax:

```java
<T extends Pt> List<T> inCircle(List<T> pts,
                                   Pt center,
                                   double r) {
    List<T> result = new ArrayList<T>();
    for(T pt : pts) {
        if(pt.distance(center) < r)
            result.add(pt);
    }
    return result;
}
```

• Note: For backward-compatibility and implementation reasons, in Java there is actually always a way to use casts to get around the static checking with generics 😞
 – With or without bounded polymorphism