Name:

CSE 341, Spring 2008, Final Examination
11 June 2008

Please do not turn the page until everyone is ready.

Rules:

e The exam is closed-book, closed-note, except for one side of one 8.5x11in piece of paper.

Please stop promptly at 10:20.

e You can rip apart the pages, but please staple them back together before you leave.

There are 100 points total, distributed unevenly among 7 questions (most with multiple parts).

e When writing code, style matters, but don’t worry about indentation.

Advice:
e Read questions carefully. Understand a question before you start writing.
e Write down thoughts and intermediate steps so you can get partial credit.

e The questions are not necessarily in order of difficulty. Skip around.

If you have questions, ask.

Relax. You are here to learn.



Name:

1. (a) (10 points) Write a Scheme function maxInt that takes one argument.

e Assume the argument is a “nested number list.” A “nested number list” is a list where each
element is either a number or another “nested number list.” A “nested number list” can be
the empty list.

e Return the value of the largest number anywhere in the argument, or #£ if the argument has
no numbers (one such example is the empty list).

e Sample solution is about 8 lines; this is just a rough guide.

(b) (5 points) Give two reasons why a similar function in ML would not type-check.



2.

Name:

(a)

(7 points) Suppose this expression appears somewhere in a Scheme program:

(f (lambda (x y) (g x y)))
What is a simpler and equivalent expression that could always replace the expression above?

(5 points) Suppose this expression appears somewhere in a Scheme program:

(f (lambda (x y) ((g) x y)))

Consider your answer to part (a) except replace any g in it with (g). Call this the “modified
answer.” Replacing the expression above with the “modified answer” does not necessarily produce
an equivalent program. Give an example that shows this. That is, write a program that uses
(f (lambda (x y) ((g) x y))) somewhere and replacing this with the “modified answer” would
change how the program behaves. Briefly explain your answer.



Name:

. In this problem, we consider an interpreter for a language FUPL (for final useless programming language)
which is like MUPL from Homework 5, but the language does not have functions. Instead it has mylet
and myletstar, which are like Scheme’s let and let*. Programs are built using these structs:

(define-struct var (string)) ;3 a variable, e.g., (make-var "foo")
(define-struct int (num)) ;; a constant number, e.g., (make-int 17)
(define-struct add (el e2)) ;; add two expressions

(define-struct mylet (bindings body)) ;; a let expression

(define-struct myletstar (bindings body)) ;; a let* expression

For both forms of let-expressions, the bindings field is assumed to hold a Scheme list of Scheme pairs
where each pair is a Scheme string (the variable name) in the car position and a FUPL expression in
the cdr position. The body field is assumed to hold a FUPL expression.

Here is an interpreter with two blanks you will fill in. It uses append, map, and fold, which are defined
below in the expected way. The questions are on the next page.

(define (envlookup env str)
(cond [(null? env) (error "unbound variable during evaluation" str)]
[(equal? (caar env) str) (cdar env)]
[#t (envlookup (cdr env) str)]l))

(define (eval-prog p)
(letrec ([f (lambda (env p)
(cond [(var? p) (envlookup env (var-string p))]
[(int? p) pl
[(add? p) (let ([vl (f env (add-el p))]
[v2 (f env (add-e2 p))])
(if (and (int? v1) (int? v2))
(make-int (+ (int-num v1) (int-num v2)))
(error "FUPL addition applied to non-number")))]
[(mylet? p) (f (append (map

(mylet-bindings p))
env)
(mylet-body p))]
[(myletstar? p) (f (fold

env
(myletstar-bindings p))
(myletstar-body p))]
[#t (error "bad FUPL expression")]))1)
£ O p))»

(define (append 1lstl 1lst2)
(if (null? 1stl)
1st2
(cons (car 1stl) (append (cdr 1stl) 1st2))))
(define (map f 1st)
(if (null? 1st)
O
(cons (f (car 1st)) (map f (cdr 1st)))))
(define (fold f acc lst)
(if (null? 1st)
acc
(fold f (f acc (car 1lst)) (cdr 1st))))



Name:

Problem 8 continued

(a)
(b)

(5 points) In English, briefly explain the difference between Scheme’s let and letx*.
Complete the interpreter as follows:

i. (5 points) Complete the mylet case by providing the first argument to map.
ii. (5 points) Complete the myletstar case by providing the first argument to fold.

Remember the environment is a mapping from strings to FUPL values, and we need to evaluate
each FUPL expression in the correct environment. An English explanation of what you are trying
to do may help with partial credit.

(5 points) Complete the FUPL program below such that evaluating it would produce (make-int 2)
but changing the make-myletstar to mylet would make evaluating it produce (make-int 1). Re-
member to use the FUPL constructors make-int and make-var in the right places. (The sample
solution does not use make-add.)

(make-mylet (list (cons "a" (make-int 1)))
(make-myletstar ...

D))



Name:

. (15 points)

This Ruby class makes a private copy of an array and has methods for updating the array and returning
its sum:

class ArraySum
def initialize arr
Q@arr = Array.new arr
end
def sum
@arr.inject {lacc,x| acc + x} # inject is the Ruby library’s word for fold
end
def update(i,v)
Qarr[i] = v
end
end

Write a subclass MemoizedArraySum that works as follows:

e An instance does not compute the array’s sum until the sum method is called.

e If an instance’s sum method is called again before the update method is called, then sum returns
an answer that is already computed.

e The first time sum is called after update is called, the sum is simply recomputed (without using
any precomputed information).

Use super as appropriate.



Name:

. Because Ruby is dynamically typed, method calls can fail at run-time as in this example program:

class C
def initialize
m(3,4)
end
end
C.new # needs C to have a method it does not have

Consider a “type system” for Ruby that is not intended to prevent all method-call errors, but is
intended to prevent all errors on method calls to self (for example the call to m above). Suppose the
“type system” works as follows:

e We first look at the whole program to gather all the methods defined by each class and mixin.

e Then for every class, we look at the body of every method defined in the class. If a method body
in some class C contains a call to a method m, then we require one or more of the following:
— Class C defines a method m.
— A superclass of C defines a method m.
— C or a superclass of C includes a mixin with a method m.

(a) (7 points) Our “type system” rightly rejects the program above. However, there are other
programs that:
e Have exactly the same definition for class C
e When run, execute the initialize method in class C.
e Do not have a run-time error.
Give such a program. Hint: Use new, but not on class C.

(b) (4 points) Does part (a) demonstrate that our “type system” is unsound or that it is incomplete?

(¢) (3 points) Our “type system” is in fact unsound and incomplete given that we want every call to
self to “make sense” and execute some method body. Give a reason the type system is unsound
(if you answered “incomplete” for part (b)) or incomplete (if you answered “unsound” for part

(b))



Name:

6. For this problem, short answers (about 2 sentences) can be sufficient. That is, we are not asking for a
long essay.
(a) (6 points) Why are Ruby mixins more powerful than Java-style interfaces?

(b) (6 points) Even if Ruby did not have mixins, why would it not be useful to add Java-style
interfaces to Ruby.



Name:

. Suppose we have a Java-like statically typed object-oriented language where (unlike actual Java) a
method in a subclass with the same name always overrides a same-named method in a superclass.
Consider this code skeleton:

class Al extends Object { int x() { return 1; } }
class A2 extends Al { int y(O) { return 2; } }
class A3 extends A2 { int z() { return 3; } }

class C2 extends Object {
void m(A2 a) { a.y(O; }
}
class C1 extends C2 {
void m(A1 a) { a.x(); }
}
class C3 extends C2 {
void m(A3 a) { a.z(); }
}
class Main {
public static void main(String [] args) { ... }
}

(a) (6 points) Which subclass of C2 should be rejected in order to keep the type system sound?

(b) (6 points) Fill in the ... above such that if the subclassing you chose in part (a) were al-
lowed, then the whole program would type-check, but at run-time there would be a message-not-
understood error. Explain what method call would cause this error. (As in Java, write new C()
to make a new object of class C. Also as in Java, assume objects can be cast to supertypes.)



