
Name:

CSE341 Spring 2017, Midterm Examination
April 28, 2017

Please do not turn the page until 12:30.

Rules:

• The exam is closed-book, closed-note, etc. except for one side of one 8.5x11in piece of paper.

• Please stop promptly at 1:20.

• There are 100 points, distributed unevenly among 6 questions (all with multiple parts):

• The exam is printed double-sided.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit. But clearly indicate what
is your final answer.

• The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the
questions.

• If you have questions, ask.

• Relax. You are here to learn.



Name:

1. (21 points) This problem uses this datatype binding, where a value of type miniHTML describes the
contents of an HTML page that uses a tiny subset of HTML. No knowledge of HTML is necessary.

datatype miniHTML =

Text of string (* string holds text that appears on the page *)

| Image of string * int * int (* string is the name of the file containing the image,

first int is image width in pixels,

second int is image height in pixels *)

| BulletList of miniHTML list (* a bullet list of other items *)

For both problems below, you can use local helper functions or ML standard-library functions.

(a) Write a function numPixels of type miniHTML -> int that computes the count of all the pixels
that are in any of the images anywhere in the argument. (Images are rectangles.)

(b) Write a function noImages of type miniHTML -> miniHTML where the result is like the argument
except the result has no images. Each image should be replaced with text: If the file containing
the image is foo, then the replacement text should be removed image from file foo.

Solution:



fun numPixels1 m =

let

fun loop ms =

case ms of

[] => 0

| m::ms => numPixels1 m + loop ms

in

case m of

Text _ => 0

| Image(_,h,w) => h * w

| BulletList ms => loop ms

end

fun numPixels2 m =

case m of

Text _ => 0

| Image(_,h,w) => h * w

| BulletList ms => List.foldl (fn (x,y) => y + numPixels2 x) 0 ms

fun noImages1 m =

let

fun loop ms =

case ms of

[] => []

| m::ms => noImages1 m :: loop ms

in

case m of

Text _ => m

| Image(s,_,_) => Text ("removed image from file " ^ s)

| BulletList ms => BulletList (loop ms)

end

fun noImages2 m =

case m of

Text _ => m

| Image(s,_,_) => Text ("removed image from file " ^ s)

| BulletList ms => BulletList (map noImages2 ms)



Name:

2. (19 points) This problem uses the following ML code where an int_tree represents a binary tree of
ints, but only internal nodes hold ints (leaves do not). Note values of type int_tree are not assumed
to be sorted in any particular way (for example, they are not binary search trees).

exception Empty

datatype int_tree = Leaf | Node of int * int_tree * int_tree

fun min t =

case t of

(* 1 *)

Leaf => raise Empty

(* 2 *)

| Node(i,Leaf,Leaf) => i

(* 3 *)

| Node(i,t1,Leaf) => let val m = min t1 in if i < m then i else m end

(* 4 *)

| Node(i,t1,t2) => let

val m1 = min t1

val m2 = min t2

val m3 = if m1 < m2 then m1 else m2

in

if i < m3 then i else m3

end

(* 5 *)

(a) What is the type of the min function above?

(b) Assuming min is supposed to compute the smallest number in a tree, it is wrong. Fix it by adding
one more branch to the case expression in one of the five positions indicated by comments above.
That is, write the code for one more branch and indicate where you are putting it.

(c) Give an example argument to min such that min behaves differently before and after your change
in part (b). Indicate the behavior of min before and after your change.

(d) Now consider moving the code you added in part (b) to one of the other positions. For each
position, give one of these answers:

A. This position would work too.

B. This position is actually the one you already picked in part (b).

C. This position would not work: moving your part (b) answer here would either lead to a
type-checking error or to min producing the wrong answer.

Do not consider in your answer that the first branch has no | character and the others do. That
is, assume we fix that syntactic issue as necessary.

Position 1: Position 2: Position 3: Position 4: Position 5:



Solution:

(a) int_tree -> int

(b) Node(i,Leaf,t2) => let val m = min t2 in if i < m then i else m end in position (3)
or (4). Other answers possible using more nested patterns, which affects the answer to part
(d).

(c) Node(7,Leaf,Node(9,Leaf,Leaf) raises an exception before the change and evaluates to 7 after
the change.

(d) 1:C, 2: C, 3: A/B, 4:A/B, 5:C



Name:

3. (13 points) In this problem, we ask you to give good error messages for why a short ML program
does not type-check. A specific phrase or short sentence is plenty.

For example, for the program,

fun f1 (x,y) = if x then y + 1 else x

a fine answer would be, “the then-branch-expression and the else-branch-expression do not have the
same type.”

Give good error messages for each of the following:

(a) fun f2 x y =

if x = 0

then y + 1

else 2 * f2 (x-1,y)

(b) fun f3 x y = x + y + a

val a = 17

val b = f3 6

val c = b

(c) fun f4 (xs,ys) =

case (xs,ys) of

([],_) => 0

| (_,[]) => 0

| ([],[]) => 0

| (_::xs,_::ys) => 1 + f4 (xs,ys)

(d) fun f5 = List.map (fn x => x + 3)

Solution:

(a) recursive call is tupled but function binding is curried

(b) no a is in scope where f3 is defined

(c) third pattern is redundant: it cannot match unless an earlier pattern matches

(d) fun binding needs an argument pattern (probably meant a val binding)



Name:

4. (20 points)

(a) Without using any helper functions (except ::), write a function choose_map of type
(’a * ’a -> bool) -> (’a -> ’b) -> ’a list -> ’a list -> ’b list as follows:

• It takes four arguments in curried form.

• The length of the result is equal to the length of the longer of the third and fourth arguments.

• The ith element of the output is the second argument applied to the ith element of either the
third argument or the fourth argument.

• To choose which, we use the first argument on the two ith elements — a result of true means
use the third argument’s element and a result of false means use the fourth argument’s
element.

• But if the lists have different lengths, then for positions past the end of the shorter list we just
use the element of the longer list and, for such elements, the first argument to choose_map is
irrelevant.

(b) Use a val binding and a partial application of choose_map to define a function pick_bigger of
type int list -> int list -> int list where, for example,
pick_bigger [1,7,9] [0,10,9,4,2] = [1,10,9,4,2]

(c) Fill in the three blanks below such that t2 evaluates to true.

fun zero_floor xs = pick_bigger (List.map _________________ _______) _______

val t2 = zero_floor [~2,~4,0,5,~3,7] = [0,0,0,5,0,7]

(d) What is the type of zero_floor?

Solution:

(a) fun choose_map f1 f2 xs ys =

case (xs,ys) of

([],[]) => []

| (x::xs,[]) => (f2 x):: choose_map f1 f2 xs ys (* or choose_map f1 f2 ys xs *)

| ([],y::ys) => (f2 y):: choose_map f1 f2 xs ys

| (x::xs,y::ys) => if f1 (x,y)

then (f2 x)::choose_map f1 f2 xs ys

else (f2 y)::choose_map f1 f2 xs ys

(b) val pick_bigger = choose_map (fn (x,y) => x > y) (fn z => z)

(c) fun zero_floor xs = pick_bigger (List.map (fn x => 0) xs) xs

Alternate correct solution we were not anticipating:
fun zero_floor xs = pick_bigger (List.map (fn x => if x > 0 then x else 0) xs) []

(d) int list -> int list



Name:

5. (8 points)

(a) Your friend proposes replacing the implementation of ML’s List.map with this tail-recursive
implementation:

fun new_map f xs =

let

fun loop acc xs =

case xs of

[] => acc

| x::xs => loop ((f x)::acc) xs

in

loop [] xs

end

Explain to your friend in roughly 1 English sentence why this is a bad idea.

(b) Now your friend proposes adding this function of type
(’a * ’b -> ’c) -> (’a * ’b) list -> ’c list to ML’s list library as a useful iterator over
lists of pairs:

fun map_pair f xs =

case xs of

[] => []

| (a,b)::xs => (f (a,b)) :: (map_pair f xs)

Explain to your friend in roughly 1 English sentence why this is a bad idea.

Solution:

(a) new_map returns a list whose elements are in the reverse order from what map does

(b) Any call to map_pair can just be a call to map, which is strictly more general



Name:

6. (19 points) This problem considers this ML module definition:

structure Circ :> CIRC =

struct

type circle = real * real * real (* center x-coordinate, center y-coordinate, radius *)

val unitCircle = (0.0, 0.0, 1.0) (* center at orgin, radius 1 *)

fun moveX ((x,y,r), dx) = (x+1.0*dx, y, r)

fun moveY ((x,y,r), dy) = (x, y+1.0*dy, r)

fun scaleR ((x,y,r), f) = (x, y, 1.0*r*f)

fun intersect ((x1,y1,r1),(x2,y2,r2)) = let

val dx = x2 - x1

val dy = y2 - y1

in

Math.sqrt(dx*dx + dy*dy) < r1 + r2

end

end

(a) Complete this signature definition so that clients can use all the variable and function bindings
in Circ for circles but the type of circles is abstract.

signature CIRC =

sig

type circle

end

(b) Consider a function area for computing the area of a circle (hints: (1) πr2, (2) Math.pi).

i. Write an implementation of area that works inside the Circ module.

ii. Extend CIRC to make area available to clients.

iii. What type does your area implementation have inside the Circ module?

iv. Yes or no: If area is not provided by the module, is it possible for clients to write an equiv-
alent function outside the module?

(c) Consider a function funnyCircleMaker that takes one real (call it a) and produces a circle with
center-x-coordinate, center-y-coordinate, and radius that are all a.

i. Write an implementation of funnyCircleMaker that works inside the Circ module.

ii. Extend CIRC to make funnyCircleMaker available to clients.

iii. What type does your funnyCircleMaker implementation have inside the Circ module?



iv. Yes or no: If funnyCircleMaker is not provided by the module, is it possible for clients to
write an equivalent function outside the module?

Solution:

(a) signature CIRC =

sig

type circle

val unitCircle : circle

val moveX : circle * real -> circle

val moveY : circle * real -> circle

val scaleR : circle * real -> circle

val intersect : circle * circle -> bool

end

(b) i. fun area (_,_,r) = Math.pi * r * r

ii. Add val area : circle -> real

iii. ’a * ’b * real -> real (answer can depend on part (i))

iv. No

(c) i. fun funnyCircleMaker a = (a,a,a)

ii. Add val funnyCircleMaker : real -> circle

iii. ’a -> ’a * ’a * ’a (answer can depend on part (i))

iv. Yes



Name:

Here is an extra page in case you need it. If you use it for a question, please write “see also extra
sheet” or similar on the page with the question.


