
Name:

CSE341 Spring 2017, Final Examination
June 8, 2017

Please do not turn the page until 8:30.

Rules:

• The exam is closed-book, closed-note, etc. except for both sides of one 8.5x11in piece of paper.

• Please stop promptly at 10:20.

• There are 125 points, distributed unevenly among 9 questions (all with multiple parts):

• The exam is printed double-sided.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit. But clearly indicate what
is your final answer.

• The questions are not necessarily in order of difficulty. Skip around. Make sure you get to all the
questions.

• If you have questions, ask.

• Relax. You are here to learn.

Name:

1. (17 points) (Racket programming) This problem uses the two Racket struct definitions below for
defining binary trees of numbers where (empty) is an empty tree (contains zero numbers). Note: A
binary tree is not necessarily a binary search tree — it is fine for any numbers to appear at any position
in a tree.

(struct node (left num right) #:transparent)

(struct empty () #:transparent)

This problem has parts (a)–(e), some of them on the next page, which should provide more than enough
space.

(a) Draw a simple picture of the tree represented by the value bound to part-a in this code:

(define (single n) (node (empty) n (empty)))

(define part-a (node (single 3) 4 (single 5)))

(b) Now write a Racket definition such that part-b is bound to the tree represented by this picture
(where 5 is the root and any not-shown children are empty trees):

5

/

4

/

3

(c) Write a Racket function forall that takes two arguments: (1) a function taking one argument
and (2) a binary tree. forall should evaluate to #f if and only if there is some number (anywhere)
in the second argument such that the first argument returns #f when passed that number. (Note
forall should return #t if the second argument is the empty tree.)

Name:

(d) Use forall, which you wrote in the previous problem, to write a Racket function all-in-range

that takes two numbers i and j and one tree t and evaluates to #t if all numbers in t are greater
than or equal to i and less than or equal to j.

(e) Consider this code that uses the forall function you wrote:

(define (gross-abuse-of-forall t)

(let ([x 0])

(begin (forall (lambda (n)

(begin (set! x (+ x 1))

#t))

t)

x)))

i. Describe in at most one English sentence what gross-abuse-of-forall computes. (Do not
describe how it does so — describe what clients would “see”.)

ii. Write a Racket function foo that is equivalent to gross-abuse-of-forall but does not use
forall and does not use mutation.

Solution:

(a) 4

/ \

3 5

(b) (define part-b (node (node (single 3) 4 (empty)) 5 (empty)))

(c) (define (forall f t)

(if (empty? t)

#t

(and (f (node-num t))

(forall f (node-left t))

(forall f (node-right t)))))

(d) (define (all-in-range i j t)

(forall (lambda (n) (and (<= i n) (<= n j))) t))

(e) It returns the number of numbers in the tree given as the one argument.

(define (foo t)

(if (empty? t)

0

(+ 1 (foo (node-left t)) (foo (node-right t)))))

Name:

2. (9 points) Consider this (silly) Racket code:

(define x 7)

(define fa

(lambda (x)

(let ([y (+ x 1)])

(+ y x))))

(define fb

(let ([y (+ x 1)])

(lambda (x)

(+ y x))))

(define-syntax fc

(syntax-rules ()

[(fc y)

(+ x y 1)]))

(set! x 15)

(define a (fa 4))

(define b (fb 4))

(define c (fc 4))

After all this code is evaluated:

(a) What is a bound to?

(b) What is b bound to?

(c) What is c bound to?

Solution:

(a) 9

(b) 12

(c) 20

Name:

3. (10 points) (Streams) Remember a stream is a thunk that returns a pair where the cdr is a stream.

(a) Write a Racket function n-at-once that takes a stream s and a number n and returns a pair
where the car is a list holding the first n elements of s in order and the cdr is the stream that is
like s but with the first n elements of s removed. Assume n is a non-negative number and s is a
stream.

Hint: Sample solution is about 6 lines and uses recursion but does not define any helper functions.

(b) Fill in the three blanks below so that part-b is bound to ’(7 8 9 10).

(define (f i) (lambda () (cons i (f (+ i 1)))))

(define part-b (_________ (n-at-once (f _________) ________)))

Solution:

(a) (define (n-at-once s n)

(if (= n 0)

(cons null s)

(let* ([pr (s)]

[r (n-at-once (cdr pr) (- n 1))])

(cons (cons (car pr) (car r)) (cdr r)))))

(b) (define part-b (car (n-at-once (f 7) 4)))

Name:

4. (25 points) (Interpreter implementation) Below is an implementation for a subset of mupl, but
eval-under-env contains several bugs, which means the language implementation is wrong.

(struct var (string) #:transparent) ;; a variable, e.g., (var "foo")

(struct int (num) #:transparent) ;; a constant number, e.g., (int 17)

(struct add (e1 e2) #:transparent) ;; add two expressions

(struct ifnz (e1 e2 e3) #:transparent) ;; if not zero e1 then e2 else e3

(struct mlet (var e body) #:transparent) ;; a local binding (let var = e in body)

(struct apair (e1 e2) #:transparent) ;; make a new pair

(struct first (e) #:transparent) ;; get first part of a pair

(struct second (e) #:transparent) ;; get second part of a pair

(define (envlookup env str) ; envlookup is exactly what we gave you for Homework 5

(cond [(null? env) (error "unbound variable during evaluation" str)]

[(equal? (car (car env)) str) (cdr (car env))]

[#t (envlookup (cdr env) str)]))

(define (eval-under-env e env)

(cond [(var? e) (envlookup env (var-string e))]

[(int? e) e]

[(add? e) (let ([v1 (eval-under-env (add-e1 e) env)]

[v2 (eval-under-env (add-e2 e) env)])

(if (and (int? v1) (int? v2))

(int (+ (int-num v1) (int-num v2)))

(error "MUPL addition applied to non-number")))]

[(ifnz? e) (let ([v1 (eval-under-env (ifnz-e1 e) env)]

[v2 (eval-under-env (ifnz-e2 e) env)]

[v3 (eval-under-env (ifnz-e3 e) env)])

(if (int? v1)

(if (= (int-num v1) 0) v2 v3)

(error "MUPL ifnz applied to non-number")))]

[(mlet? e) (let* ([v (eval-under-env (mlet-e e) env)])

(eval-under-env (mlet-body e)

(list (cons (mlet-var e) v))))]

[(apair? e) (apair (eval-under-env (apair-e1 e) env)

(eval-under-env (apair-e2 e) env))]

[(first? e) (if (apair? (first-e e))

(apair-e1 (first-e e))

(error "MUPL first applied to non-apair"))]

[(second? e) (if (apair? (second-e e))

(apair-e2 (second-e e))

(error "MUPL second applied to non-apair"))]

[#t (error (format "bad MUPL expression: ~v" e))]))

(define (eval-exp e) ; eval-exp is exactly what we gave you for Homework 5

(eval-under-env e null))

For each of the expressions on the next page, give two things:

• What the correct answer is, i.e., what the interpreter should produce.

• What the actual answer is, i.e., what the interpreter above actually produces. For some of the
expressions, the interpreter does the correct thing, so the answer is the same as the correct answer.
However, due to bugs, the interpreter could either produce a different answer or fail with an error.

For example, an answer for (eval-exp (add (int 2) (int 2))) could be:

• correct: (int 4)

• actual: (int 4)

Name:

(a) (eval-exp (first (apair (apair (int 3) (int 4)) (int 5))))

(b) (eval-exp (first (apair (add (int 3) (int 4)) (int 5))))

(c) (eval-exp (first (first (apair (apair (int 3) (int 4)) (int 5)))))

(d) (eval-exp (mlet "x" (int 4) (ifnz (var "x") (var "x") (var "y"))))

(e) (eval-exp (mlet "x" (int 4) (ifnz (var "x") (int 5) (int 6))))

(f) (eval-exp (mlet "x" (int 4) (mlet "y" (int 4) (ifnz (var "x") (int 5) (int 6))))

(g) (eval-exp (mlet "y" (int 4) (mlet "x" (int 4) (ifnz (var "x") (int 5) (int 6)))))

Solution:

(a) correct: (apair (int 3) (int 4))

actual: (apair (int 3) (int 4))

(b) correct: (int 7)

actual: (add (int 3) (int 4))

(c) correct: (int 3)

actual: the error MUPL first applied to non-apair

(d) correct: (int 4)

actual: the error undefined variable during evaluation "y"

(e) correct: (int 5)

actual: (int 6)

(f) correct: (int 5)

actual: the error undefined variable during evaluation "x"

(g) correct: (int 5)

actual: (int 6)

Name:

5. (14 points) (Static vs. Dynamic Typing) Consider this Racket function:

(define (sort-pair p)

(cond [(or (not (pair? p))

(not (number? (car p)))

(not (number? (cdr p))))

(error "I am so very sorry but sort-pair cannot handle your argument")]

[(>= (car p) (cdr p)) p]

[#t (cons (cdr p) (car p))]))

(a) Port sort-pair to ML by defining an analogous function sort_pair type int * int -> int * int,
removing any logic that serves no purpose in ML.

(b) Suppose we now wish to change sort-pair in Racket so that (sort-pair null) evaluates to
null. Describe exactly how to make this change. (You can write the whole new function if you
wish, but you can also describe it precisely to avoid so much writing.)

(c) After making the change in part (b), would a previous caller of sort-pair now need to be
modified? Answer “definitely”, “maybe”, or “definitely not.” If “definitely” or “maybe”, explain
the easiest way to find a caller that needs changing.

(d) Make the corresponding change to sort_pair in ML by completing this code so that sort_pair
has type (int * int) option -> (int * int) option.

fun sort_pair opt =

case opt of

SOME (x,y) =>

| NONE =>

(e) After making the change in part (d), would a previous caller of sort_pair now need to be
modified? Answer “definitely”, “maybe”, or “definitely not.” If “definitely” or “maybe”, explain
the easiest way to find a caller that needs changing.

Solution:

(a) fun sort_pair (x,y) = if x >= y then (x,y) else (y,x)

(b) Immediately after the keyword cond, add [(null? p) p]. (Other answers possible.)

(c) “definitely not” is the expected answer, but answers that discuss callers that expect an error when
calling sort-pair with null can be given full credit.

(d) fun sort_pair opt =

case opt of

SOME (x,y) => SOME (if x >= y then (x,y) else (y,x))

| NONE => NONE

(e) Definitely: no previous calls to sort_pair still type-check, so running the type-checker identifies
them all. (Technically this might not be true with polymorphic expressions and such but that is
not an answer we expect/consider, so with an appropriate explanation “maybe” can receive full
credit.)

Name:

6. (15 points) (OOP) This problem considers this Ruby code, which we put in two columns just to
make it easier to see all at once.

class CoinCollection

end

class Penny < CoinCollection

def value

1

end

end

class Nickel < CoinCollection

def value

5

end

end

class Dime < CoinCollection

def value

10

end

end

cs0 = TwoCollections.new(Dime.new,NoCoins.new)

cs1 = TwoCollections.new(Nickel.new,TwoCollections.new(cs0,Nickel.new))

part_a = cs1.value

class Quarter < CoinCollection

def value

25

end

end

class NoCoins < CoinCollection

def value

0

end

end

class TwoCollections < CoinCollection

def initialize (cc1,cc2)

@cc1 = cc1

@cc2 = cc2

end

def value

@cc1.value + @cc2.value

end

end

(a) What is part_a bound to in the code above?

(b) Add three method definitions to the code above (indicate what classes you are adding them to)
such that if c is an instance of any subclass of CoinCollection, then c.numCoins evaluates to
the number of coins in the collection (e.g., cs1.numCoins == 3).

(c) Use Ruby’s Comparable mixin and 1 added method definition so that any two instances of
CoinCollection can be compared with >, <, >=, etc. in terms of their values. For example,
Dime.new > Nickel.new == true. Hint: <=>

(d) After your additions in the previous two problems, indicate for each of the following whether
evaluating the expression causes an error (“yes” for error and “no” for not an error).

i. Penny.new > 0

ii. 0 > Penny.new

iii. Penny.new.value > 0

iv. 0 > Penny.new.value

Solution:

(a) 20

(b) class CoinCollection class NoCoins class TwoCollections

def numCoins def numCoins def numCoins

1 0 @cc1.numCoins + @cc2.numCoins

end end end

end end end

(c) class CoinCollection

include Comparable

def <=> other

value <=> other.value

end

end

(d) i. yes

ii. yes

iii. no

iv. no

Name:

7. (14 points) (OOP vs. FP) Consider the Ruby code in the previous problem, including all the provided
code and your additions for (b), but not your additions for (c). Port this code to ML using a functional
style by defining:

• One datatype binding with six constructors.

• Two functions numCoins and value.

• Top-level bindings for cs0, cs1, and part_a.

Solution:

datatype coin_collection = Penny | Nickel | Dime | Quarter | NoCoins

| TwoCollections of coin_collection * coin_collection

fun numCoins cc =

case cc of

NoCoins => 0

| TwoCollections(cc1,cc2) => numCoins cc1 + numCoins cc2

| _ => 1

fun value cc =

case cc of

Penny => 1

| Nickel => 5

| Dime => 10

| Quarter => 25

| NoCoins => 0

| TwoCollections(cc1,cc2) => value cc1 + value cc2

val cs0 = TwoCollections(Dime,NoCoins)

val cs1 = TwoCollections(Nickel,TwoCollections(cs0,Nickel))

val part_a = value cs1

Name:

8. (6 points) (Arrays and Blocks)

Consider again the Ruby code for Problem 6. Write a method m that takes an argument arr that we as-
sume is an array where every array element is either nil or an instance of a subclass of CoinCollection.
Implement m so it returns the total value of the coins in the array.

For example, m [Penny.new, nil, TwoCollections.new(Dime.new,Dime.new)] should evaluate to
21.

Solution:
There are many solutions. Here are two:

def m arr

arr.inject(0) {|x,y| x + (if y.nil? then 0 else y.value end)}

end

def m arr

ans = 0

arr.each {|x| if x.is_a? CoinCollection then ans = ans + x.value end}

ans

end

Name:

9. (15 points) (Subtyping) This problem considers a language like in lecture containing (1) records with
mutable fields, (2) functions, and (3) subtyping. Even though we learned in lecture that it is a bad
idea, the language includes width subtyping, permutation subtyping, and depth subtyping. The goal of
the type system is to prevent accessing a field of a record that does not exist.

(a) Is the type system sound? (Yes or no; no explanation needed.)

(b) If possible, fill in the two blanks below such that the program type-checks but, when run, accesses
a field of a record that does not exist. If this is impossible, just say “impossible.”

fun f (x : {f1: {f11 : int}, f2 : int}) =

(* function f ends here; the next 3 lines (including the blank) are at top-level *)

val y : {f1 : {f11: int, f12:int}, f2 : int} = {f1 = {f11 = 0, f12 = 0}, f2 = 0};

f(y);

For parts (c), (d), (e), and (f), we now consider a change to our type system. Suppose we extend
our type system with the idea of “readonly” fields in record types. In addition to all the types
we already had, each field in a record type can be marked “readonly” or not. For example, in
{f1 : int, readonly f2 : int, readonly f3 : int} fields f2 and f3 are marked readonly. To
type-check e.f, we still require e has a record type containing a field f (marked “readonly” or not)
but for e1.f = e2 we do not allow the f field in the type of e1 to be “readonly.”.

Note: The exam as given had an unfortunate bug. The above parapgraph didn’t indicate what Dan
intended, namely, that with this change, we now should have depth subtyping for readonly fields and
not for the other fields. As a result we gave everyone credit for part (c). The sample solution is what
was intended, i.e., it assumes this “correction.”

(c) Is this new type system sound? (Yes or no; no explanation needed.)

(d) If possible, fill in the two blanks below such that the program type-checks but, when run, accesses
a field of a record that does not exist. If this is impossible, just say “impossible.”

fun f (x : {readonly f1: {f11 : int}, f2 : int}) =

(* function f ends here; the next 3 lines (including the blank) are at top-level *)

val y : {readonly f1 : {f11: int, f12:int}, f2 : int} = {f1 = {f11 = 0, f12 = 0}, f2 = 0};

f(y);

(e) Suppose t1 and t2 are almost the same record types. The only difference is for some field f, t1
includes f : ta and t2 includes readonly f : ta. Considering the concept of substitutability,
should we allow t1 to be a subtype of t2? (Yes or no.)

(f) If we do allow the subtyping described in part (e), which use of readonly in part (d) could we
delete and still have the code typecheck (assuming, of course, the code in the blanks typechecks)?

Solution:

(a) No

(b) fun f (x : {f1: {f11 : int}, f2 : int}) =

x.f1 = {f11 = 0}

(* function f ends here; the next 3 lines (including the blank) are at top-level *)

val y : {f1 : {f11: int, f12:int}, f2 : int} = {f1 = {f11 = 0, f12 = 0}, f2 = 0};

f(y);

y.f1.f12

(c) Yes

(d) impossible

(e) Yes

(f) The one in the type given for y.

Name:

Here is an extra page where you can put answers. If you use this page (either side), please write “see
also last page” or similar on the page with the question.

