
CSE341: Programming Languages

Section 6
What does mutation mean?

When do function bodies run?

Dan Grossman / Eric Mullen
Autumn 2017

Set!

• Unlike ML, Racket really has assignment statements
– But used only-when-really-appropriate!

• For the x in the current environment, subsequent lookups of x
get the result of evaluating expression e
– Any code using this x will be affected
– Like x = e in Java, C, Python, etc.

• Once you have side-effects, sequences are useful:

Autumn 2017 2CSE341: Programming Languages

(set! x e)

(begin e1 e2 … en)

Example

Example uses set! at top-level; mutating local variables is similar

Not much new here:
– Environment for closure determined when function is defined, 

but body is evaluated when function is called
– Once an expression produces a value, it is irrelevant how the 

value was produced
Autumn 2017 3CSE341: Programming Languages

(define b 3)
(define f (lambda (x) (* 1 (+ x b)))) 
(define c (+ b 4)) ; 7
(set! b 5)
(define z (f 4)) ; 9
(define w c) ; 7

The truth about cons
cons just makes a pair

– Often called a cons cell
– By convention and standard library, lists are nested pairs that 

eventually end with null

Passing an improper list to functions like length is a run-time error

Autumn 2017 4CSE341: Programming Languages

(define pr (cons 1 (cons #t "hi"))) ; '(1 #t . "hi")
(define lst (cons 1 (cons #t (cons "hi" null))))
(define hi (cdr (cdr pr)))
(define hi-again (car (cdr (cdr lst))))
(define hi-another (caddr lst))
(define no (list? pr))
(define yes (pair? pr))
(define of-course (and (list? lst) (pair? lst)))

The truth about cons
So why allow improper lists?

– Pairs are useful
– Without static types, why distinguish (e1,e2) and e1::e2

Style:
– Use proper lists for collections of unknown size
– But feel free to use cons to build a pair 

• Though structs (like records) may be better

Built-in primitives:
– list? returns true for proper lists, including the empty list
– pair? returns true for things made by cons

• All improper and proper lists except the empty list

Autumn 2017 5CSE341: Programming Languages

cons cells are immutable

What if you wanted to mutate the contents of a cons cell?
– In Racket you cannot (major change from Scheme)
– This is good

• List-aliasing irrelevant
• Implementation can make list? fast since listness is 

determined when cons cell is created

Autumn 2017 6CSE341: Programming Languages



Set! does not change list contents

This does not mutate the contents of a cons cell:

– Like Java’s x = new Cons(42,null), not x.car = 42

Autumn 2017 7CSE341: Programming Languages

(define x (cons 14 null))
(define y x)
(set! x (cons 42 null))
(define fourteen (car y))

mcons cells are mutable

Since mutable pairs are sometimes useful (will use them soon), 
Racket provides them too:

– mcons
– mcar
– mcdr
– mpair?
– set-mcar!
– set-mcdr!

Run-time error to use mcar on a cons cell or car on an mcons cell

Autumn 2017 8CSE341: Programming Languages

Delayed evaluation

For each language construct, the semantics specifies when 
subexpressions get evaluated.  In ML, Racket, Java, C:

– Function arguments are eager (call-by-value)
• Evaluated once before calling the function

– Conditional branches are not eager

It matters: calling factorial-bad never terminates:

Autumn 2017 9CSE341: Programming Languages

(define (my-if-bad x y z)
(if x y z))

(define (factorial-bad n)
(my-if-bad (= n 0)

1
(* n (factorial-bad (- n 1)))))

Thunks delay

We know how to delay evaluation: put expression in a function!
– Thanks to closures, can use all the same variables later

A zero-argument function used to delay evaluation is called a thunk
– As a verb: thunk the expression

This works (but it is silly to wrap if like this):

Autumn 2017 10CSE341: Programming Languages

(define (my-if x y z)
(if x (y) (z)))

(define (fact n)
(my-if (= n 0)

(lambda() 1)
(lambda() (* n (fact (- n 1))))))

The key point

• Evaluate an expression e to get a result:

• A function that when called, evaluates e and returns result
– Zero-argument function for “thunking”

• Evaluate e to some thunk and then call the thunk

• Next: Powerful idioms related to delaying evaluation and/or 
avoided repeated or unnecessary computations
– Some idioms also use mutation in encapsulated ways

Autumn 2017 11CSE341: Programming Languages

e

(lambda () e)

(e)

Avoiding expensive computations
Thunks let you skip expensive computations if they are not needed

Great if take the true-branch:

But worse if you end up using the thunk more than once:

In general, might not know many times a result is needed
Autumn 2017 12CSE341: Programming Languages

(define (f th)
(if (…) 0 (…  (th) …)))

(define (f th)
(… (if (…) 0 (… (th) …))

(if (…) 0 (… (th) …))
…
(if (…) 0 (… (th) …))))



Best of both worlds

Assuming some expensive computation has no side effects, ideally 
we would:

– Not compute it until needed
– Remember the answer so future uses complete immediately

Called lazy evaluation

Languages where most constructs, including function arguments, 
work this way are lazy languages

– Haskell

Racket predefines support for promises, but we can make our own
– Thunks and mutable pairs are enough… [Friday]

Autumn 2017 13CSE341: Programming Languages


